Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 7 Next »


Motivation


Explicit solution of  Pressure Profile in Homogeneous Steady-State Pipe Flow @model


Outputs


p(l)

Pressure distribution along the pipe

q(l)

Flowrate distribution along the pipe

u(l)

Flow velocity distribution along the pipe

Inputs


T_0

Intake temperature 

T(l)

Along-pipe temperature profile 

p_0

Intake pressure 

\rho(T, p)

q_0

Intake flowrate 

\mu(T, p)

z(l)

Pipeline trajectory TVDss

A

Pipe cross-section area  
\theta (l)


Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}

\epsilon

Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area A along hole

\theta (l) = \theta = \rm const

f(l) = f = \rm const

\rho = \rho_0 \cdot ( 1 + c^* \cdot p/p_0)



Equations


Pressure profile along the pipe
(1) L = \frac{p_0}{2 \, G \, c^* \, \rho_0} \cdot \ln \frac{G \, \rho_0^2(1+c^* p/p_0)-F}{G \, \rho_0^2(1+c^*)-F} -\frac{j_m^2}{2} \, \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}
(2) \cos \theta \leq 0
(3) L = \frac{\rho_0}{j_m^2 \cdot f/(2d)} \left[ (p_0-p) + \frac{c^*}{2 p_0} \left( p_0^2 - p^2 \right) \right] - j_m^2 \, \ln \frac{\rho_0}{\rho}
(4) \cos \theta = 0

where

\displaystyle j_m = \frac{ \dot m }{ A}

mass flux

\displaystyle \dot m = \frac{dm }{ dt}

mass flowrate

\displaystyle q_0 = \frac{dV_0}{dt} = \frac{ \dot m }{ \rho_0}

Intake volumetric flowrate

\rho_0 = \rho(T_0, p_0)

Intake fluid density 

\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

f(T,p) = f({\rm Re}(T,p), \, \epsilon)

Darcy friction factor 

\displaystyle {\rm Re}(T,p) = \frac{u(l) \cdot d}{\nu(l)} = \frac{j_m \cdot d}{\mu(T,p)}

Reynolds number in Pipe Flow

\mu(T,p)

dynamic viscosity as function of fluid temperature  T and pressure  p

\displaystyle d = \sqrt{ \frac{4 A}{\pi}}

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

G = g \, \cos \theta


F = j_m^2 \cdot f/(2d)




See also

  • No labels