Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 135 Next »


Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Outputs


p(l)

Pressure distribution along the pipe

q(l)

Flowrate distribution along the pipe

u(l)

Flow velocity distribution along the pipe

Inputs


T_0

Intake temperature 

T(l)

Along-pipe temperature profile 

p_0

Intake pressure 

\rho(T, p)

Fluid density 

q_0

Intake flowrate 

\mu(T, p)

z(l)

Pipeline trajectory TVDss

A

Pipe cross-section area  
\theta (l)


Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}

\epsilon

Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area A along hole


Equations


(1) \left( 1 - \frac{\rho_0^2 \, q_0^2}{A^2} \cdot \frac{c(p)}{\rho} \right) \frac{dp}{dl} = \rho \, g \, \cos \theta(l) - \frac{\rho_0^2 \, q_0^2 }{2 A^2 d} \frac{f({\rm Re}, \, \epsilon)}{\rho}
(2) p(l=0) = p_0


(3) u(l) = \frac{\rho_0 \cdot q_0}{\rho(T(l), p(l))) \cdot A}
(4) q(l) = \frac{\rho_0 \cdot q_0}{\rho(T(l),p(l))}

where

q_0 = q(l=0)

fluid flow rate at pipe intake

\rho_0 = \rho(T_0, p_0)

fluid density at intake temperature and pressure

с(p)

Fluid Compressibility

f({\rm Re}, \, \epsilon)

Darcy friction factor

\displaystyle {\rm Re} = \frac{u(l) \cdot d}{\nu(l)} = \frac{4 \rho_0 q_0}{\pi d} \frac{1}{\mu(T, p)}

Reynolds number in Pipe Flow

\displaystyle d = \sqrt{ \frac{4 A}{\pi}}

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

See Derivation of Pressure Profile in Stationary Isothermal Homogenous Pipe Flow @model.


Approximations



Incompressible pipe flow 
\rho(T, p) = \rho_s with constant viscosity  \mu(T, p) = \mu_s

Pressure Profile in Incompressible Isoviscous Stationary Quasi-Isothermal Pipe Flow @model

Pressure profilePressure gradient profileFluid velocityFluid rate
(5) p(l) = p_s + \rho_s \, g \, z(l) - \frac{\rho_s \, q_s^2 }{2 A^2 d} \, f_s \, l
(6) \frac{dp}{dl} = \rho_s \, g \cos \theta(l) - \frac{\rho_s \, q_s^2 }{2 A^2 d} \, f_s
(7) q(l) =q_s = \rm const

(8) u(l) = u_s = \frac{q_s}{A} = \rm const

where

f_s = f({\rm Re}_s, \, \epsilon)

Darcy friction factor at intake point

\displaystyle {\rm Re}_s = \frac{u(l) \cdot d}{\nu(l)} = \frac{4 \rho_s q_s}{\pi d} \frac{1}{\mu_s}

Reynolds number at intake point


Incompressible fluid  \rho(T, p) = \rho_s = \rm const means that compressibility vanishes  c(p) = 0 and fluid velocity is going to be constant along the pipeline trajectory  u(l) = u_s = \frac{q_s}{A} = \rm const.

For the constant viscosity  \mu(T, p) = \mu_s = \rm const along the pipeline trajectory the Reynolds number  \displaystyle {\rm Re} = \frac{4 \rho_s q_s}{\pi d} \frac{1}{\mu_s} = \rm const and Darcy friction factor  f({\rm Re}, \, \epsilon) = f_s = \rm const are going to be constant along the pipeline trajectory.

Equation  (1) becomes:

(9) \frac{dp}{dl} = \rho_s \, g \, \frac{dz}{dl} - \frac{\rho_s \, q_s^2 }{2 A^2 d} f_s

which leads to  (6) after substituting  \displaystyle \cos \theta(l) = \frac{dz(l)}{dl}  and can be explicitly integrated leading to  (5).


The first term in the right side of 
(6) defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In many practical applications the water in 
water producing wells or water injecting wells can be considered as incompressible and friction factor  can be assumed constant  f(l) = f_s = \rm const along-hole ( see  Darcy friction factor in water producing/injecting wells ).


See also


  • No labels