Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 20 Next »


Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Outputs


p(l)

Pressure distribution along the pipe

q(l)

Flowrate distribution along the pipe

u(l)

Flow velocity distribution along the pipe

Inputs


T_0

Intake temperature 

T(l)

Along-pipe temperature profile 

p_0

Intake pressure 

\rho(T, p)


q_0

Intake flowrate 

\mu(T, p)


z(l)

Pipeline trajectory TVDss

A

Pipe cross-section area  
\theta (l)


Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}

\epsilon

Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions



Constant cross-section pipe area A along hole


Equations


Pressure profile
(1) F(p, l)=\left( \frac{1}{\rho^2} - \frac{1}{\rho_0^2} \right) + \left( \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2} \right) \cdot \frac{l}{ 2 \, d} - (2/j_m^2) \, \int_p^{p_0} \frac{dp}{\rho} - (2/j_m^2) \, g \, \Delta z(l) = 0
Mass Flowrate
(2) \dot m = A \cdot \sqrt{ 2 \cdot \frac { g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho} } { \left( \frac{1}{\rho^2} - \frac{1}{\rho_0^2} \right) + \left( \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2} \right) \cdot \frac{l}{ 2 \, d} } }

 Volumetric Flowrate

(3) q_0 = \frac{A}{\rho_s} \cdot \sqrt{ 2 \cdot \frac { g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho} } { \left( \frac{1}{\rho^2} - \frac{1}{\rho_0^2} \right) + \left( \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2} \right) \cdot \frac{l}{ 2 \, d} } }
Mass Flux
(4) j_m = \sqrt{ 2 \cdot \frac { g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho} } { \left( \frac{1}{\rho^2} - \frac{1}{\rho_0^2} \right) + \left( \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2} \right) \cdot \frac{l}{ 2 \, d} } }

where

\rho_0 = \rho(T_0, p_0)

Intake fluid density 

j_m = \dot m / A

Intake mass flux

\displaystyle \dot m = \frac{dm }{ dt}

mass flowrate

\displaystyle q_0 = \frac{dV_0}{dt} = \dot m / \rho_0

Intake flowrate 

u_0 = u(l=0) = q_0 / A = j_m / \rho_0

Intake Fluid velocity

\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

f_s = f({\rm Re}_s, \, \epsilon)

Darcy friction factor at intake point

\displaystyle {\rm Re} = \frac{u(l) \cdot d}{\nu(l)} = \frac{4 \rho_0 q_0}{\pi d} \frac{1}{\mu}

Reynolds number at intake point

\displaystyle d = \sqrt{ \frac{4 A}{\pi}}

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)




The first term in the right side of 

Error rendering macro 'mathblock-ref' : Math Block with anchor=gradP could not be found.
defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In most practical applications in water producing or water injecting wells, water can be considered as incompressible and friction factor  can be assumed constant  f(l) = f_s = \rm const along-hole ( see  Darcy friction factor in water producing/injecting wells ).



References


  • No labels