Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 32 Next »

@wikipedia


Compressibility of the fluid with density  \rho and molar volume  V_m as a function of temperature  T and pressure  p:

(1) c(T,p) = \frac{1}{\rho} \left( \frac{\partial \rho}{\partial p} \right)_T = - \frac{1}{V_m} \left( \frac{\partial V_m}{\partial p} \right)_T


There is no universal analytical model for Fluid Compressibility but there is a good number of approximations which can be effectively used in engineering practice.


Approximations


Incompressible fluidCompressible fluid


Full-Range Proxy Model


Slightly compressible fluidStrongly Compressible Fluid

Real GasIdeal Gas
(2) c(T, p) = 0
(3) c(T, p) = c_0 = \rm const


...

(4) c(T, p) = \frac{1}{p}
(5) c(T, p) = \frac{c_0(T,p)}{1+c_0(T,p) \cdot p}
(6) \rho(T, p) = \rho_0(T)
(7) \rho(T, p) = \rho_0 \cdot \exp \left[ c_0(T) \cdot (p-p_0) \right]



...

(8) \rho(T, p) = \frac{\rho_0(T)}{p_0} \cdot p
(9) \rho(T, p) = \rho_0(T) \cdot \frac{1+c_0(T,p) \, p}{1+c_0(T,p) \, p_0}
(10) Z(T, p) = \frac{p}{p_0}
(11) Z(T, p) =\frac{p}{p_0}\cdot \exp \left[ - c_0(T) \cdot (p-p_0) \right]


...

(12) Z(T, p) = 1
(13) Z(T, p) = \frac{p}{p_0} \cdot \frac{1+c_0(T, p) \, p_0}{1 + c_0(T,p) \, p}

where

c

fluid compressibility

\rho

fluid density

Z

Z-factor



Mathematical models of 
Fluid Compressibility are reviewed in Fluid Compressibility @model.


The 
multi-phase fluid compressibility is a linear sum of compressibilities of its phases (see multi-phase fluid compressibility @ model).


See also


Physics / Mechanics / Continuum mechanics / Fluid Mechanics / Fluid Statics

[Compressibility]  [ Z-factor ]

[Multi-phase compressibility @model] [ Fluid Compressibility @model ]

[ Incompressible fluid ] [ Slightly Compressible Fluid ] [ Strongly Compressible Fluid ] [ Ideal Gas ]


  • No labels