Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 18 Next »

The most general Pump model is given as a function of volumetric flowrate of the intake p_{\rm in} and discharge pressure  p_{\rm out}:

(1) q = q(p_{\rm out}, p_{\rm in})

x

The power consumpotion is given by:

(2) W(q,p) = \eta(q) \cdot q \cdot (p-p_{\rm in})

where

\eta

pump efficiency


In most practical cases  the pump  model  (1)depends on the diffference between  intake and discharge pressure  p_{\rm out} - p_{\rm in} and called pump characteristic curve (see Fig. 1):

(3) q = q(p_{\rm out} - p_{\rm in})

The pump characteristic curve  F(x)  can be usually approximated by the following equation:

(4) F(x)= 1 - (1- x^m)^n

and usually  n=0.5 and  m=1: F(x)= 1- \sqrt{1- x}.


Fig. 1. Pump Characteristic Curve


A popular pump proxy model is given by quadratic equation:

(5) q = \frac{q_{\rm max}}{2 \cdot k_f} \cdot \left[ -(1- k_f) + \sqrt{ (1 + k_f)^2 - 4 \cdot k_f \cdot (p- p_{\rm in})/p_{\rm max}) \ } \right]
(6) \eta(q) = 4 \, \eta_{\rm max} \cdot q/q_{\rm max} \cdot ( 1 - q/q_{\rm max})

where

p_{\rm max}

maximum pressure gain that pump can exert over the input pressure  p_{\rm in}

q_{\rm max}

maximum flowrate that pump can produce

k_f

curvature of the pump characteristics (dimensionless)

\eta

pump efficiency

\eta_{\rm max}

maximum pump efficiency

W

electrical consumption per unit time


See also


Natural Science / Engineering / Device / Pump


References





  • No labels