Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 39 Next »

Motivation



One of the key challenges in Pipe Flow Dynamics is to predict the along-hole temperature distribution during the stationary fluid transport.

In many practical cases the temperature distribution for the stationary fluid flow can be approximated by homogenous fluid flow model.

Pipeline Flow Temperature Model is addressing this problem with account of the varying pipeline trajectory, pipeline schematic and heat transfer with the matter around pipeline.


Outputs


T(t, l)

along-pipe temperature distribution and evolution in time


Inputs


{\bf r}(l)

pipeline trajectory{\bf r}(l) = \{ x(l), \, y(l), \, z(l) \}

\rho(T, p)

A(l)

\mu(T, p)

T_0(t)

intake temperature

T_{e0}(l)

initial temperature of the medium around the pipeline

p_0

intake pressure

c_p(l)

specific heat capacity of the medium around pipeline

q_0

intake flowrate

\lambda_e(l)

thermal conductivity of the medium around pipeline

U(l)

heat transfer coefficient  based on pipeline schematic




Assumptions



Equations


(1) \rho \, c \, \frac{\partial T}{\partial t} = \frac{d}{dl} \, \bigg( \lambda \, \frac{dT}{dl} \bigg) - \rho \, c \, v \, \frac{dT}{dl} + \frac{2 \lambda}{\lambda_e} \cdot \frac{r_f}{r_w^2} \cdot U \cdot \left[ T_e(t, l, r_w) - T \right]
(2) \rho_e \, c_e \, \frac{\partial T_e}{\partial t} = \nabla ( \lambda_e \nabla T_e)
(3) T(t=0, l) = T_{e0}(l)
(4) T_e(t=0, l, r) = T_{e0}(l)
(5) T(t, l=0) = T_0(t)
(6) T_e(t, l, r \rightarrow \infty) = T_{e0}(l)
(7) 2 \pi \, \lambda_e \, r_w \, \frac{\partial T_e}{\partial r} \, \bigg|_{r=r_w} = 2 \pi \, r_f \, U \cdot \left( T_e \, \bigg|_{r=r_w} - T \right)


(see 
Derivation of Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model )

Approximations





References



https://en.wikipedia.org/wiki/Darcy_friction_factor_formulae


https://neutrium.net/fluid_flow/pressure-loss-in-pipe/ 
























  • No labels