Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 66 Next »

@wikipedia


Dimensionless quantity characterising the ratio of thermal convection to thermal conduction in fluids across (normal to) the boundary with solids:

(1) {\rm Nu} = \frac{\rm Convective \ heat \ transfer}{\rm Conductive \ heat \ transfer} = \frac{U}{\lambda / L} =\frac{U \cdot L}{\lambda }

where  U is the convective heat transfer coefficient of the flow,  L is the characteristic length \lambda is the thermal conductivity of the fluid.


Stagnant Fluid



For 
 Stagnant Fluid the Nusselt number is a constant number (OEIS sequence A282581):

(2) {\rm Nu}=3.6568


Natural Convection


In Natural Fluid Convection becomes dependant on Rayleigh number  \rm Ra and Prandtl number  \rm Pr \mbox{Nu} = f (\mbox{Ra}, \mbox{Pr}).


(3) \mbox{Nu}_D= \left[ 0.825 + \frac{0.387 \, \mbox{Ra}_D^{1/6}}{ \left[ 1+ (0.492/\mbox{Pr})^{9/16} \right]^{8/27}} \right]^2


Churchill and Chu 


All flow regimes in pipelines

\mbox{Ra}_D \leq 10^{12}

(4) \mbox{Nu}_L= 0.68 + \frac{0.663 \, \mbox{Ra}^{1/4}}{ \left[ 1+ (0.492/\mbox{Pr})^{9/16} \right]^{4/9}}


Churchill and Chu


Laminar flow

\mbox{Ra} \leq 10^9
(5) \mbox{Nu}_L= \left[ 0.6 + \frac{0.387 \, \mbox{Ra}^{1/6}}{ \left[ 1+ (0.559/\mbox{Pr})^{9/16} \right]^{8/27}} \right]^2

Churchill and Chu



Forced Convection



In Forced Fluid Convection the 
Nusselt number becomes dependant on Reynolds number  \rm Re and Prandtl number  \rm Pr\mbox{Nu} = f (\mbox{Re}, \mbox{Pr}).


(6) {\rm Nu}=3.66 + \frac{ 0.065 \cdot {\rm Re} \cdot {\rm Pr} \cdot {D/L} }{ 1 + 0.04 \cdot ({\rm Re} \cdot {\rm Pr} \cdot {D/L})^{2/3} }


Mills


Laminar flow in pipeline with diameter  D and length  L.

(7) {\rm Nu}=0.023 \cdot \mbox{Re}_D^{3/4} \cdot \mbox{Pr}^n


Dittus-Boelter


Turbulent flow  in pipeline 

\mbox{Re} \geq 10,000

(8) {\rm Nu}=\frac{ (f/8) \, ({\rm Re} - 1000) {\rm Pr} }{ 1 + 12.7 \, (f/8)^{1/2} \, ({\rm Pr}^{2/3} -1) }


Gnielinski

{\displaystyle 3000\leq \mathrm {Re}\leq 5\cdot 10^{6}}

0.5\leq \mathrm {Pr} \leq 2000 

f is Darcy friction factor

(9) {\rm Nu}=0.3 + \frac{0.62 \, \mbox{Re}^{1/2} \, \mbox{Pr}^{1/3} } {\left[ 1+ (0.4/\mbox{Pr})^{2/3} \right]^{1/4}} \left[ 1 + \left( \frac{\mbox{Re}}{282000} \right)^{5/8}\right]^{4/5}

All flow regimes in pipelines

\mbox {Re} \cdot \mbox {Pr} \geq 0.2

Accuracy  \sim 20 \%


See also


Physics / Thermodynamics / Heat Transfer

Heat Transfer Coefficient (HTC) ] Heat Transfer Coefficient @model ]

Dimensionless Heat Transfer Numbers ]

[ Prandtl number ] [ Rayleigh number ] Reynolds number ]

References










  • No labels