Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 26 Next »

@wikipedia


Dimensionless quantity characterizing the ratio of convective to conductive heat transfer across (normal to) the boundary:


(1) {\rm Nu} = \frac{\rm Convective \ heat \ transfer}{\rm Conductive \ heat \ transfer} = \frac{U}{\lambda / L} =\frac{U \cdot L}{\lambda }


where  U is the convective heat transfer coefficient of the flow,  L is the characteristic length \lambda is the thermal conductivity of the fluid.


For stagnant fluid the Nusselt number is a constant number (OEIS sequence A282581):

(2) {\rm Nu}=3.6568


In moving fluids the convection component becomes contributing and the Nusselt number becomes dependant on Reynolds number  \rm Re and Prandtl number  \rm Pr.

For laminar flows in pipeline the Nusselt number can be estimated through empirical correlation:

(3) {\rm Nu}=3.66 + \frac{ 0.065 \cdot {\rm Re} \cdot {\rm Pr} \cdot {D/L} }{ 1 + 0.04 \cdot ({\rm Re} \cdot {\rm Pr} \cdot {D/L})^{2/3} }


For laminar-turbulent transition and turbulent flow in pipeline the Nusselt number becomes also depdedant on friction with wall, quantifiable by Darcy friction factor  f, and can be estimated through empirical correlation (Gnielinski ):

(4) {\rm Nu}=\frac{ (f/8) \, ({\rm Re} - 1000) {\rm Pr} }{ 1 + 12.7 \, (f/8)^{1/2} \, ({\rm Pr}^{2/3} -1) }

for  0.5\leq \mathrm {Pr} \leq 2000 and  {\displaystyle 3000\leq \mathrm {Re}\leq 5\cdot 10^{6}}.

See also


Physics / Thermodynamics / Heat Transfer

Heat Transfer Coefficient (HTC) ] Heat Transfer Coefficient @model ]

Prandtl number (Pr) ]


References


Gnielinski, Volker (1975). "Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen". Forsch. Ing.-Wes. 41 (1): 8–16.




  • No labels