Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 106 Next »


Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Outputs


p(l)

Pressure distribution along the pipe

q(l)

Flowrate distribution along the pipe

u(l)

Flow velocity distribution along the pipe

Inputs


T_s

Intake temperature 

T(l)

Along-pipe temperature profile 

p_s

Intake pressure 

\rho(T, p)

Fluid density 

q_s

Intake flowrate 

\mu(T, p)

z(l)

Pipeline trajectory TVDss

A

Pipe cross-section area  
\theta (l)


Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}

\epsilon

Inner pipe wall roughness

Assumptions


Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area A along hole


Equations


(1) \bigg( 1 - \frac{c(p) \, \rho_s^2 \, q_s^2}{A^2} \bigg ) \frac{dp}{dl} = \rho \, g \, \frac{dz}{dl} - \frac{\rho_s^2 \, q_s^2 }{2 A^2 d} \frac{f({\rm Re}, \, \epsilon)}{\rho}
(2) q(l) = \frac{\rho_s \cdot q_0}{\rho}

(3) u(l) = \frac{\rho_s \cdot q_s}{\rho \cdot A}
(4) p(l=0) = p_s
(5) q(l=0) = q_s
(6) \rho(T_s, p_s) = \rho_s

where

f({\rm Re}, \, \epsilon)

Darcy friction factor

\displaystyle {\rm Re} = \frac{u(l) \cdot d}{\nu(l)} = \frac{4 \rho_s q_s}{\pi d} \frac{1}{\mu(T, p)}

Reynolds number

\displaystyle d = \sqrt{ \frac{4 A}{\pi}}

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)


See Derivation of Pressure Profile in Stationary Isothermal Homogenous Pipe Flow @model.


Approximations



Incompressible pipe flow  \rho(T, p) = \rho_s with constant viscosity  \mu(T, p) = \mu_s

Pressure Profile in Incompressible Isoviscous Stationary Quasi-Isothermal Pipe Flow @model


Pressure profilePressure gradient profileFluid velocityFluid rate
(7) p(l) = p_s + \rho_s \, g \, z(l) - \frac{\rho_s \, q_s^2 }{2 A^2 d} \, f_s \, l
(8) \frac{dp}{dl} = \rho_s \, g \cos \theta(l) - \frac{\rho_s \, q_s^2 }{2 A^2 d} \, f_s
(9) q(l) =q_s = \rm const

(10) u(l) = u_s = \frac{q_s}{A} = \rm const




The first term in the right side of  (8) defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In most practical applications in water producing or water injecting wells, water can be considered as incompressible and friction factor  can be assumed constant  f(l) = f_s = \rm const along-hole ( see  Darcy friction factor in water producing/injecting wells ).



References



















  • No labels