Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 31 Next »

@wikipedia


Darcy friction factor  f depends on flow regime, as well as shape and roughness  \epsilon of inner pipe walls.


For a smooth ( \epsilon = 0) tubular pipeline Darcy friction factor  f can be estimated from various empirical correlations

(1) f = 64 \, \rm Re^{-1}


\rm Re < 2,100


Laminar fluid flow

no universal correlations due to a high flow instability

2,100 < \rm Re < 4,000

Laminar-turbulent transition fluid flow

(2) f = 0.32 \, \rm Re^{-0.25}


4,000 < \rm Re < 50,000


Turbulent fluid flow

(3) f = 0.184 \, \rm Re^{-0.2}


\rm Re > 50,000


Strong-turbulent fluid flow

where

{\rm Re}(l) = \frac{d \, v \, \rho}{\mu}

Reynolds number

d(l)

Inner diameter of a pipe

\mu(l) = \mu( \, p(l), \, T(l) \,)

dynamic fluid viscosity as function \mu(p, T) of pressure p(l) and temperature T(l) along the pipe


For non-smooth pipelines  \epsilon > 0 the Darcy friction factor  f  can be estimated from empirical Colebrook–White correlation which works for non-laminar flow:

(4) \frac{1}{\sqrt{f}} = -2 \, \log \Bigg( \frac{\epsilon}{3.7 \, d} + \frac{2.51}{{\rm Re} \sqrt{f}} \Bigg)

For many practical applications the Churchill correlation provides a fair (< 2 % accuracy and improving towards laminar flow) estimation of  Darcy friction factor  f for all pipe flow regimes:

(5) f = \frac{64}{\rm Re} \, \Bigg [ 1+ \frac{\big(\rm Re / 8 \big)^{12} }{ \big( \Theta_1 + \Theta_2 \big)^{1.5} } \Bigg]^{1/12}
(6) \Theta_1 = \left[ 2.457 \, \ln \left( \left( \frac{7}{\rm Re} \right)^{0.9} + 0.27 \, \frac{\epsilon}{d} \right) \right]^{16}
(7) \Theta_2 = \left( \frac{37530}{\rm Re} \right)^{16}


Typical surface roughness of a factory steel pipelines is  \epsilon = 0.05 mm which may increase significantly under mineral sedimentation or erosive impact of the flowing fluids.

See Surface roughness for more data on typical values for various materials and processing conditions.


The most popular full-range model of Darcy friction factor is:

(8) \begin{cases} f = 64/\mbox{Re}, & \mbox{if Re}<2,100 \\f = a + b \cdot \mbox{Re}, & 2,100 < \mbox{if Re}<4,100 \\f = f_{CW}( \mbox{Re}, \, \epsilon), & \mbox{if Re}>2,100 \end{cases}

where

f_{CW}(\mbox{Re}, \epsilon)

Colebrook–White correlation

\displaystyle b = \frac{ f_{CW}( \mbox{Re} =4,000, \, \epsilon) -0.03048}{1,900}


a=0.03048 - 2,100 \cdot b



See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Darcy–Weisbach equation / Darcy friction factor 

Surface roughness ]


Reference


Moody’s Friction Factor Calculator @ gmallya.com



  • No labels