Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 94 Next »

Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Inputs & Outputs


InputsOutputs

T_s

Intake temperature 

p(l)

Pressure distribution along the pipe

p_s

Intake pressure 

q(l)

Flowrate distribution along the pipe

q_s

Intake flowrate 

u(l)

Flow velocity distribution along the pipe

z(l)

Pipeline trajectory TVDss

\theta (l)


Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}



{\bf r}(l)



T(l)

Along-pipe temperature profile 



\rho(T, p)



\mu(T, p)



A

Pipe cross-section area  

\epsilon

Inner pipe wall roughness



Assumptions


Stationary fluid flowHomogenous fluid flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area A along hole


Equations



(1) \bigg( 1 - \frac{c(p) \, \rho_s^2 \, q_s^2}{A^2} \bigg ) \frac{dp}{dl} = \rho \, g \, \frac{dz}{dl} - \frac{\rho_s^2 \, q_s^2 }{2 A^2 d} \frac{f({\rm Re}, \, \epsilon)}{\rho}
(2) q(l) = \frac{\rho_s \cdot q_0}{\rho}

(3) u(l) = \frac{\rho_s \cdot q_s}{\rho \cdot A}
(4) p(l=0) = p_s
(5) q(l=0) = q_s
(6) \rho(T_s, p_s) = \rho_s

where

f({\rm Re}, \, \epsilon)

Darcy friction factor

\displaystyle {\rm Re} = \frac{u(l) \cdot d}{\nu(l)} = \frac{4 \rho_s q_s}{\pi d} \frac{1}{\mu(T, p)}

Reynolds number

\displaystyle d = \sqrt{ \frac{4 A}{\pi}}

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)


See Derivation of Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model.


Approximations



Incompressible pipe flow  \rho(T, p) = \rho_s with constant viscosity  \mu(T, p) = \mu_s


Pressure profilePressure gradient profileFluid velocityFluid rate
(7) p(l) = p_s + \rho_s \, g \, z(l) - \frac{\rho_s \, q_s^2 }{2 A^2 d} \, f_s \, l
(8) \frac{dp}{dl} = \rho_s \, g \cos \theta(l) - \frac{\rho_s \, q_s^2 }{2 A^2 d} \, f_s
(9) q(l) =q_s = \rm const

(10) u(l) = u_s = \frac{q_s}{A} = \rm const

where

\theta(l)

trajectory inclination


Incompressible fluid  \rho(T, p) = \rho_s = \rm const means that compressibility vanishes  c(p) = 0 and fluid velocity is going to be constant along the pipeline trajectory  u(l) = u_s = \frac{q_s}{A} = \rm const.

For the constant viscosity  \mu(T, p) = \mu_s = \rm const along the pipeline trajectory the Reynolds number  \displaystyle {\rm Re} = \frac{4 \rho_s q_s}{\pi d} \frac{1}{\mu_s} = \rm const and Darcy friction factor  f({\rm Re}, \, \epsilon) = f_s = \rm const are going to be constant along the pipeline trajectory.

Equation  (1) becomes:

(11) \frac{dp}{dl} = \rho_s \, g \, \frac{dz}{dl} - \frac{\rho_s \, q_s^2 }{2 A^2 d} f_s

which leads to  (8) after substituting  \displaystyle \cos \theta(l) = \frac{dz(l)}{dl}  and can be explicitly integrated leading to  (7).


The first term in the right side of  (8) defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In most practical applications in water producing or water injecting wells, water can be considered as incompressible and friction factor  can be assumed constant  f(l) = f_s = \rm const along-hole ( see  Darcy friction factor in water producing/injecting wells ).



References



















  • No labels