Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 63 Next »

Motivation


One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Inputs & Outputs


InputsOutputs

p_0

Intake pressure 

p(l)

Pressure distribution along the pipe

q_0

Intake flowrate 

u(l)

Flow velocity distribution along the pipe

\theta (l)



{\bf r}(l)



T(l)

Along-pipe temperature profile 



\rho(T, p)



\mu(T, p)



A

Pipe cross-section area  

\epsilon

Inner pipe wall roughness



Assumptions


Stationary fluid flowHomogenous fluid flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area A along hole



Equations



(1) \bigg( 1 - \frac{c(p) \, \rho_0^2 \, q_0^2}{A^2} \bigg ) \frac{dp}{dl} = \rho(p) \, g \, \frac{dz}{dl} - \frac{\rho_0^2 \, q_0^2 }{2 A^2 d} \frac{f(p)}{\rho(p)}
(2) u(l) = \frac{\rho_0 \cdot q_0}{\rho(p) \cdot A(l)}
(3) q(l) = \frac{\rho_0 \cdot q_0}{\rho(p)}


(see Derivation of Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model )

Approximations



Incompressible pipe flow with constant friction


Pressure profilePressure gradient profileFluid velocityFluid rate
(4) p(l) = p_0 + \rho \, g \, z(l) - \frac{\rho_0 \, q_0^2 }{2 A^2 d} \, f_0 \, l
(5) \frac{dp}{dl} = \rho \, g \cos \theta(l) - \frac{\rho_0 \, q_0^2 }{2 A^2 d} \, f_0
(6) u(l) = \frac{q_0}{A}
(7) q(l) =q_0 = \rm const

where

\displaystyle \cos \theta(l) = \frac{dz(l)}{dl}

correction factor for trajectory inclination


The first term in  (5) defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In most practical applications in water producing or water injecting wells the water can be considered as incompressible and friction factor  an be assumed constant  f(l) = f_s = \rm const along-hole ( see  Darcy friction factor in water producing/injecting wells ).



References


















  • No labels