Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 115 Next »


Consider a well-reservoir system (Fig. 1) consisting of:

  • producing well W1 with total sandface flowrate  q_1(t)>0 and BHP  p_1(t)>0, draining the reservoir volume V_{\phi, 1} 

  • water injecting well W0 with total sandface flowrate  q_0(t) <0, supporting pressure in reservoir volume V_{\phi, 0} 


The injection drainage volume   V_{\phi, 0} includes the drainage volume  V_{\phi, 1} of producer W1 and may be equal to it  V_{\phi, 0} = V_{\phi, 1} or may be bigger   V_{\phi, 0} > V_{\phi, 1} in case injector W0 supports other producers {W1 .. WN}:  V_{\phi, 0} = \sum_{k=1}^N V_{\phi, k}.


Fig. 1. Location map of injector-producer pairing with 4 producers {W1, W2, W3W4} and one injector W0.

Case #1 –  Constant flowrate production:  q_1 = \rm const >0


The bottom-hole pressure response  \delta p_1 in producer W1 to the flowrate variation  \delta q_0 in injector W0:

(1) \delta p_1 = - p_{u,\rm 21}(t) \cdot \delta q_0

where

t

time since the water injection rate has changed by the  \delta q_0 value.

p_{u,\rm 01}(t)

cross-well pressure transient response in producer W1 to the unit-rate production in injector W0


Consider a pressure convolution equation for the BHP in producer Wwith constant flowrate production at producer W1  q_1 = \rm const and varying injection rate at injector W2  q_2(t):

(2) p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 01}(t-\tau) dq_0(\tau) = p_i - \int_0^t p_{u,\rm 01}(t-\tau) dq_0(\tau)

Consider a step-change in injector's W0 flowrate  \delta q_0 at zero time  \tau = 0, which can be writen as 

(3) q_0(\tau) = \delta q_0 \cdot H(\tau)

where  H(\tau) is Heaviside step function:

(4) H(\tau) = \begin{cases} 0, & \tau <0 \\ 1, &\tau \geq 0\end{cases}

The differential dq_0 then can be written as:

(5) d q_0(\tau) = q_0'(\tau) d\tau = \delta q_0 \cdot H'(\tau) \, d\tau = \delta q_0 \cdot \delta(\tau) \, d\tau

The responding pressure variation  \delta p_1 in producer Wwill be:

(6) \delta p_1(t) = p_1(t)-p_i = - \int_0^t p_{u,\rm 21}(t-\tau) \delta q_0 \cdot \delta(\tau) \, d\tau = - p_{u,\rm 01}(t) \cdot \delta q_0

which leads to  (1).


Case #2 – Constant BHPp_1 = \rm const


Assume that the flowrate in producer W1 is being automatically adjusted by \delta q_1(t) to compensate the bottom-hole pressure variation  \delta p_1(t) in response to the  total sandface flowrate variation  \delta q_2 in injector W0 so that bottom-hole pressure in producer W1 stays constant at all times \delta p_1(t) = \delta p_1 = \rm const. In petroleum practice this happens when the formation is capable to deliver more fluid than the current lift settings in producer so that the bottom-hole pressure in producer is constantly kept at minimum value defined by the lift design..

In this case, flowrate response  \delta q_1 in producer W1 to the flowrate variation  \delta q_0 in injector W0 is going to be:

(7) \delta q_1(t) = - \frac{\dot p_{u,\rm 01}(t)}{\dot p_{u,\rm 11}(t)} \cdot \delta q_0

where

t

time since injector's W0 rate has changed by  \delta q_0.

\dot p_{u,\rm 01}(t)

time derivative of cross-well pressure transient response (CTR) in producer W1 to the unit-rate production in injector W0

\dot p_{u,\rm 11}(t)

time derivative of drawdown pressure transient response (DTR) in producer W1 to the unit-rate production in the same well


Consider a pressure convolution equation for the above 2-wells system with constant BHP:

(8) p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 01}(t-\tau) dq_0(\tau) = \rm const

The time derivative is going to be zero as the BHP in producer W1 stays constant at all times:

(9) \dot p_1(t) = - \left( \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) \right)^{\cdot} - \left( \int_0^t p_{u,\rm 01}(t-\tau) dq_0(\tau) \right)^{\cdot} = 0
(10) p_{u,\rm 11}(0) \cdot q_1(t) + \int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau) = - p_{u,\rm 01}(0) \cdot q_0(t) - \int_0^t \dot p_{u,\rm 01}(t-\tau) dq_0(\tau)

The zero-time value of DTR / CTR is zero by definition  p_{u,\rm 11}(0) = 0, \, p_{u,\rm 01}(0) = 0 which leads to:

(11) \int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau) = - \int_0^t \dot p_{u,\rm 21}(t-\tau) dq_2(\tau)

Consider a step-change in producer's W1 flowrate  \delta q_1 and injector's W0 flowrate  \delta q_0 at zero time  \tau = 0, which can be written as  dq_1(\tau) = \delta q_1 \cdot \delta(\tau) \, d\tau .

Assume that a lift mechanism in producer automatically adjusts the flowrate to maintain the same flowing bottom-hole  and  dq_0(\tau) = \delta q_0 \cdot \delta(\tau) \, d\tau. Substituting this to  (11) leads to:

(12) \int_0^t \dot p_{u,\rm 11}(t-\tau) \delta q_1 \cdot \delta(\tau) \, d\tau = - \int_0^t \dot p_{u,\rm 01}(t-\tau) \delta q_0 \cdot \delta(\tau) \, d\tau
(13) \dot p_{u,\rm 11}(t) \delta q_1 = - \dot p_{u,\rm 01}(t) \delta q_0

which leads to  (7).


For the finite-volume drain  V_{\phi,1} \leq V_{\phi,0} < \infty the flowrate response factor  \delta q_1 / \delta q_0 is getting stabilised over time as:

(14) \delta q_1 / \delta q_0 = - f_{01} = - \frac{V_{\phi, 1}}{ V_{\phi, 0}} = \rm const

The response delay in time still exists but in usual time-scales of production analysis it becomes negligible and one can consider (14) as constant in time.


For the finite-volume reservoir  V_{\phi,1} \leq V_{\phi,0} < \infty the DTR and CTR are both going through the PSS flow regime at late transient times:

(15) p_{u,\rm 11}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi, 1}}
(16) p_{u,\rm 01}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi,2}}

where

c_t

average drain-area  total compressibility of formation within   V_{\phi,1} which is jointly drained by producer W1 and injector W0 

Substituting  (15) and  (16) in  (7) one arrives to (14).


In case injector W0 supports only one producer W1, then both wells drain the same reservoir volume  V_{\phi, 0} = V_{\phi, 1} so that  (14) leads to:

(17) \delta q_1 = -\delta q_0

which means that producer W1 with constant BHP and finite-reservoir volume will eventually vary its rate at the same volume as injector W0.

In case injector W0 supports many producers {W1 .. WN} then all injection shares towards producers are going to sum up to a unit value:

(18) \sum_{k=1}^N f_{0k} = 1

with constant coefficients f_{0k} \geq 0, \ {k=\{i..N \} }unless there is a thief injection outside the drainage area of all producers and in this case: 

(19) \sum_{k=1}^N f_{0k} < 1



If pressure around producer W1 is supported by several injectors  N_{\rm inj} > 1 then production response in producer W1 is going to be:

(20) \delta q_1 =-\sum_i f_{i1} \delta q_i

with constant coefficients f_{i1} \geq 0, \ {i=\{0..N_{\rm inj} \} }

The equations  (18) (19) and  (20) make one of the key assumptions in Capacitance Resistance Model (CRM).

It is important to note that CRM assumption that injector W0 may drain bigger volume than producer W1   V_{\phi, 0}> V_{\phi, 1} is a misnomer in most practical cases.

When wells (producers and injectors) are placed into the same connected reservoir volume they drain the same total volume  V_\phi all together and all UTRs will have the same LTR asymptotic:

(21) p_{u,\rm ik}(t \rightarrow \infty ) \rightarrow \frac{t}{\rm RS}, \quad \forall i \in N_{\rm inj}, k \in N.

where  \rm RS = \int_V c_t \, \phi \, dV is total reservoir storage connecting all the wells. 


Moreover, if each well is placed in different reservoir volumes which are only connected through wellbores then again they will all drain the same volume which is the sum of all connected volumes through the wellbores and all UTRs will again trend to the same LTR asymptotic.


In order to relate true UTRs (from numerical grid simulations or from deconvolution) to the CRM injection share constants  f_{ik} one needs to implement a certain workflow:

  1. Start with true UTRs  \displaystyle p_{u, ik}(t) with the same LTR asymptotic \displaystyle p_{u, ik}(t) \rightarrow \frac{t}{RS}.
  2. Select injector W0 
    1. Select producer W1
      1. Perform two convolution tests to account for the impact from {W2 .. WN} production on to DTR_11 p_{u, 11}(t) and CTR_01 p_{u, 01}(t):
        • Test #1 – DTR_11
          • Calculate historically-averaged rate for each producer:  \displaystyle q^*_k = \frac{1}{N_k} \sum_{m=1}^{N_k} q_k(t_m)
          • Calculate interfering DTR_11:  \displaystyle p^*_{u, 11}(t) = p_{u, 11}(t) + \sum_{k \neq 1} p_{u, k1}(t) \cdot q^*_k, meaning that injector W0 is shut-down and all producers are working with constant rates  q^*_k, except producer W1 which is working with unit-rate
        •  Test #2 – CTR_01
          • Calculate historically-averaged rate for each producer:  \displaystyle q^*_k = \frac{1}{N_k} \sum_{m=1}^{N_k} q_k(t_m)
          • Calculate interfering CTR_01:  \displaystyle p^*_{u, 01}(t) = p_{u, 01}(t) + \sum_{k} p_{u, k1}(t) \cdot q^*_k , meaning that injector W0 is working with unit-rate and all producers are working with constant rates  q^*_k
      2. Calculate injection share constant\displaystyle f_{01} = \frac{\dot p^*_{01}(t)}{\dot p^*_{11}(t)} \Bigg|_{t \rightarrow \infty} as LLS over equation:  \displaystyle \dot p^*_{01}(t) = f_{01} \cdot \dot p^*_{11}(t)
    2. Repeat the same for other producers (starting from point 2a onwards)
  3. Repeat the same for other injectors (starting from point 2 onwards)


Again it is important to note a difference between

  • CRM assumptions (constant PI, constant drainage volumes with no flow boundaries and constant total compressibility) – which may or may not take place and hence may or may not make CRM applicable in a specific case

and

  • CRM concept of mismatching drainage volumes between producers and injectors which is just a terminology and does not exert restrictions on well-reservoir system

See also


[UTR] [ DTR ] [ CTR ] [ Capacitance Resistance Model (CRM) ]






  • No labels