Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 89 Next »


Consider a well-reservoir system (Fig. 1) consisting of:

  • producing well W1 with total sandface flowrate  q_1(t)>0 and BHP  p_1(t)>0, draining the reservoir volume V_{\phi, 1} 

  • water injecting well W0 with total sandface flowrate  q_0(t) <0, supporting pressure in reservoir volume V_{\phi, 0} 


The injection drainage volume   V_{\phi, 0} includes the drainage volume  V_{\phi, 1} of producer W1 and may be equal to it  V_{\phi, 0} = V_{\phi, 1} or may be bigger   V_{\phi, 0} > V_{\phi, 1} in case injector W0 supports other producers {W1 .. WN}:  V_{\phi, 0} = \sum_{k=1}^N V_{\phi, k}.


Fig. 1. Location map of injector-producer pairing with 4 producers {W1, W2, W3W4} and one injector W0.

Case #1 –  Constant flowrate production:  q_1 = \rm const >0


The bottom-hole pressure response  \delta p_1 in producer W1 to the flowrate variation  \delta q_0 in injector W0:

(1) \delta p_1 = - p_{u,\rm 21}(t) \cdot \delta q_2

where

t

time since the water injection rate has changed by the  \delta q_2 value.

p_{u,\rm 01}(t)

cross-well pressure transient response in producer W1 to the unit-rate production in injector W0


Consider a pressure convolution equation for the BHP in producer Wwith constant flowrate production at producer W1  q_1 = \rm const and varying injection rate at injector W2  q_2(t):

(2) p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 01}(t-\tau) dq_0(\tau) = p_i - \int_0^t p_{u,\rm 01}(t-\tau) dq_0(\tau)

Consider a step-change in injector's W0 flowrate  \delta q_0 at zero time  \tau = 0, which can be written as:  dq_0 (\tau) = \delta q_0 \cdot \delta(\tau) \, d\tau.

The responding pressure variation  \delta p_1 in producer Wwill be:

(3) \delta p_1(t) = p_1(t)-p_i = - \int_0^t p_{u,\rm 21}(t-\tau) \delta q_0 \cdot \delta(\tau) \, d\tau = - p_{u,\rm 01}(t) \cdot \delta q_0

which leads to  (1).


Case #2 – Constant BHPp_1 = \rm const


Assume that the flowrate in producer W1 is being automatically adjusted by \delta q_1(t) to compensate the bottom-hole pressure variation  \delta p_1(t) in response to the  total sandface flowrate variation  \delta q_2 in injector W0 so that bottom-hole pressure in producer W1 stays constant at all times \delta p_1(t) = \delta p_1 = \rm const. In petroleum practice this happens when the formation is capable to deliver more fluid than the current lift settings in producer so that the bottom-hole pressure in producer is constantly kept at minimum value defined by the lift design..

In this case, flowrate response  \delta q_1 in producer W1 to the flowrate variation  \delta q_0 in injector W0 is going to be:

(4) \delta q_1(t) = - \frac{\dot p_{u,\rm 01}(t)}{\dot p_{u,\rm 11}(t)} \cdot \delta q_0

where

t

time since injector's W0 rate has changed by  \delta q_0.

\dot p_{u,\rm 01}(t)

time derivative of cross-well pressure transient response (CTR) in producer W1 to the unit-rate production in injector W0

\dot p_{u,\rm 11}(t)

time derivative of drawdown pressure transient response (DTR) in producer W1 to the unit-rate production in the same well


Consider a pressure convolution equation for the above 2-wells system with constant BHP:

(5) p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 01}(t-\tau) dq_0(\tau) = \rm const

The time derivative is going to be zero as the BHP in producer W1 stays constant at all times:

(6) \dot p_1(t) = - \left( \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) \right)^{\cdot} - \left( \int_0^t p_{u,\rm 01}(t-\tau) dq_0(\tau) \right)^{\cdot} = 0
(7) p_{u,\rm 11}(0) \cdot q_1(t) + \int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau) = - p_{u,\rm 01}(0) \cdot q_0(t) - \int_0^t \dot p_{u,\rm 01}(t-\tau) dq_0(\tau)

The zero-time value of DTR / CTR is zero by definition  p_{u,\rm 11}(0) = 0, \, p_{u,\rm 01}(0) = 0 which leads to:

(8) \int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau) = - \int_0^t \dot p_{u,\rm 21}(t-\tau) dq_2(\tau)

Consider a step-change in producer's W1 flowrate  \delta q_1 and injector's W0 flowrate  \delta q_0 at zero time  \tau = 0, which can be written as  dq_1(\tau) = \delta q_1 \cdot \delta(\tau) \, d\tau .

Assume that a lift mechanism in producer automatically adjusts the flowrate to maintain the same flowing bottom-hole  and  dq_0(\tau) = \delta q_0 \cdot \delta(\tau) \, d\tau. Substituting this to  (8) leads to:

(9) \int_0^t \dot p_{u,\rm 11}(t-\tau) \delta q_1 \cdot \delta(\tau) \, d\tau = - \int_0^t \dot p_{u,\rm 01}(t-\tau) \delta q_0 \cdot \delta(\tau) \, d\tau
(10) \dot p_{u,\rm 11}(t) \delta q_1 = - \dot p_{u,\rm 01}(t) \delta q_0

which leads to  (4).


For the finite-volume drain  V_{\phi,1} \leq V_{\phi,0} < \infty the flowrate response factor  \delta q_1 / \delta q_0 is getting stabilised over time as:

(11) \delta q_1 / \delta q_0 = - f_{01} = - \frac{V_{\phi, 1}}{ V_{\phi, 0}} = \rm const

The response delay in time still exists but in usual time-scales of production analysis it becomes negligible and one can consider (11) as constant in time.


For the finite-volume reservoir  V_{\phi,1} \leq V_{\phi,0} < \infty the DTR and CTR are both going through the PSS flow regime at late transient times:

(12) p_{u,\rm 11}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi, 1}}
(13) p_{u,\rm 01}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi,2}}

where

c_t

average drain-area  total compressibility of formation within   V_{\phi,1} which is jointly drained by  producer W1 and injector W0 

Substituting  (12) and  (13) in  (4) one arrives to (11).


In case injector W0 supports only one producer W1 , then both wells drain the same volume and  V_{\phi, 0} = V_{\phi, 1} so that  (11) leads to:

(14) \delta q_1 = -\delta q_0

which means that producer W1 with constant BHP and finite-reservoir volume will eventually vary its rate at the same volume as injector W0.

In case injector W0 supports many producers {W1 .. WN} then all injection shares towards producers are going to sum up to a unit value:

(15) \sum_{k=1}^N f_{0k} = 1

unless there is thief injection outside the drain area of all producers and in this case: 

(16) \sum_{k=1}^N f_{0k} < 1



If pressure in producer W1 is supported by several injectors  N_{\rm inj} > 1 then over a long period of time one can assume:

(17) \delta q_1 =\sum_k f_{k1} \delta q_k

with constant coefficients f_{1k}, \ {k=\{1..N_{\rm inj} \} }, which makes one of the key assumptions in Capacitance Resistance Model (CRM).

See also


[ DTR ] [ CTR ] [ Capacitance Resistance Model (CRM) ]





  • No labels