Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 77 Next »


Consider a well-reservoir system consisting of:

  • producing well W1 with total sandface flowrate  q_1(t)>0 and BHP  p_1(t)>0, draining the reservoir volume V_{\phi, 1} 

  • water injecting well W2 with total sandface flowrate  q_2(t) <0, supporting pressure in reservoir volume V_{\phi, 2} which includes the drainage volume  V_{\phi, 1} of producer W1 and potentially other producers. 


The drainage volume difference \delta V_{\phi} = V_{\phi, 2} - V_{\phi, 1} >0 may be related to the fact that water injection W2 is shared between V_{\phi, 1} and another reservoir  or with another producer. 

Case #1 –  Constant flowrate production:  q_1 = \rm const >0


The bottom-hole pressure response  \delta p_1 in producer W1 to the flowrate variation  \delta q_2 in injector W2:

(1) \delta p_1 = - p_{u,\rm 21}(t) \cdot \delta q_2

where

t

time since the water injection rate has changed by the  \delta q_2 value.

p_{u,\rm 21}(t)

cross-well pressure transient response in producer W1 to the unit-rate production in injector W2


Consider a pressure convolution equation for the BHP in producer Wwith constant flowrate production at producer W1  q_1 = \rm const and varying injection rate at injector W2  q_2(t):

(2) p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau) = p_i - \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau)

Consider a step-change in injector's W2 flowrate  \delta q_2 at zero time  \tau = 0, which can be written as:  dq_2(\tau) = \delta q_2 \cdot \delta(\tau) \, d\tau.

The responding pressure variation  \delta p_1 in producer Wwill be:

(3) \delta p_1(t) = p_1(t)-p_i = - \int_0^t p_{u,\rm 21}(t-\tau) \delta q_2 \cdot \delta(\tau) \, d\tau = - p_{u,\rm 21}(t) \cdot \delta q_2

which leads to  (1).


Case #2 – Constant BHPp_1 = \rm const


Assume that the flowrate in producer W1 is being automatically adjusted by \delta q_1(t) to compensate the bottom-hole pressure variation  \delta p_1(t) in response to the  total sandface flowrate variation  \delta q_2 in injector W2 so that bottom-hole pressure in producer W1 stays constant at all times \delta p_1(t) = \delta p_1 = \rm const. In petroleum practice this happens when the formation is capable to deliver more fluid than the current lift settings in producer so that the bottom-hole pressure in producer is constantly kept at minimum value defined by the lift design..

In this case, flowrate response  \delta q_1 in producer W1 to the flowrate variation  \delta q_2 in injector W2 is going to be:

(4) \delta q_1(t) = - \frac{\dot p_{u,\rm 21}(t)}{\dot p_{u,\rm 11}(t)} \cdot \delta q_2

where

t

time since injector's W2 rate has changed by  \delta q_2.

\dot p_{u,\rm 21}(t)

time derivative of cross-well pressure transient response (CTR) in producer W1 to the unit-rate production in injector W2

\dot p_{u,\rm 11}(t)

time derivative of drawdown pressure transient response (DTR) in producer W1 to the unit-rate production in the same well


Consider a pressure convolution equation for the above 2-wells system with constant BHP:

(5) p_1(t) = p_i - \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) - \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau) = \rm const

The time derivative is going to be zero as the BHP in producer W1 stays constant at all times:

(6) \dot p_1(t) = - \left( \int_0^t p_{u,\rm 11}(t-\tau) dq_1(\tau) \right)^{\cdot} - \left( \int_0^t p_{u,\rm 21}(t-\tau) dq_2(\tau) \right)^{\cdot} = 0
(7) p_{u,\rm 11}(0) \cdot q_1(t) + \int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau) = - p_{u,\rm 21}(0) \cdot q_2(t) - \int_0^t \dot p_{u,\rm 21}(t-\tau) dq_2(\tau)

The zero-time value of DTR / CTR is zero by definition  p_{u,\rm 11}(0) = 0, \, p_{u,\rm 21}(0) = 0 which leads to:

(8) \int_0^t \dot p_{u,\rm 11}(t-\tau) dq_1(\tau) = - \int_0^t \dot p_{u,\rm 21}(t-\tau) dq_2(\tau)

Consider a step-change in producer's W1 flowrate  \delta q_1 and injector's W2 flowrate  \delta q_2 at zero time  \tau = 0, which can be written as  dq_1(\tau) = \delta q_1 \cdot \delta(\tau) \, d\tau and  dq_2(\tau) = \delta q_2 \cdot \delta(\tau) \, d\tau. Substituting this to  (8) leads to:

(9) \int_0^t \dot p_{u,\rm 11}(t-\tau) \delta q_1 \cdot \delta(\tau) \, d\tau = - \int_0^t \dot p_{u,\rm 21}(t-\tau) \delta q_2 \cdot \delta(\tau) \, d\tau
(10) \dot p_{u,\rm 11}(t) \delta q_1 = - \dot p_{u,\rm 21}(t) \delta q_2

which leads to  (4).


For the finite-volume drain  V_{\phi,1} \leq V_{\phi,2} < \infty the flowrate response factor  \delta q_1 / \delta q_2 is getting stabilised over time as:

(11) \delta q_1 / \delta q_2 = - f_{21} = - \frac{V_{\phi, 2}}{ V_{\phi, 1}} = \rm const

The response delay in time still exists but in usual time-scales of production analysis it becomes negligible and one can consider (11) consant.


For the finite-volume reservoir  V_{\phi,1} \leq V_{\phi,2} < \infty the DTR and CTR are both going through the PSS flow regime at late transient times:

(12) p_{u,\rm 11}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi, 1}}
(13) p_{u,\rm 21}(t \rightarrow \infty) \rightarrow \frac{t}{c_t V_{\phi,2}}

where

c_t

average drain-area  total compressibility of formation within   V_{\phi,1} which is jointly drained by  producer W1 and injector W2 

Substituting  (12) and  (13) in  (4) one arrives to (11).


In case injector W2 supports only one producer W1 both wells drain the same volume and  V_{\phi, 2} = V_{\phi, 1} so that  (11) leads to:

(14) \delta q_1 = -\delta q_2

which means that producer W1 with constant BHP and finite-reservoir volume will eventually vary its rate at the same volume as injector W2.

In case injector W2 supports many producers {W1 .. WN } then total injection shares towards producers is going to be unit:

(15) \sum_{k=1}^N f_{2k} = 1

unless there is thief injection outside the drain area of all producers. 



If pressure in producer W1 is supported by several injectors  N_{\rm inj} > 1 then over a long period of time one can assume:

(16) \delta q_1 =\sum_k f_{k1} \delta q_k

with constant coefficients f_{1k}, \ {k=\{1..N_{\rm inj} \} }, which makes one of the key assumptions in Capacitance Resistance Model (CRM).

See also


[ DTR ] [ CTR ] [ Capacitance Resistance Model (CRM) ]





  • No labels