Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 10 Next »


A ratio between actual volumetric flowrate through the orifice and ideal theoretical estimation:

(1) C_d = \frac{q_{\rm real}}{q_{\rm ideal}}

where

(2) q_{\rm ideal}=\frac{\pi d^2}{4} \cdot \sqrt{\frac{1 \cdot \Delta p}{\rho \cdot (1-\beta^4)}}

and

\Delta p

pressure drop on the choke\Delta p = p_{in} - p_{out}

\beta = \frac{d}{D}

choke narrowing ratio

d

orifice diameter

D

pipe diameter 

The deviation from ideal estimation  (2) arise from fluid friction with choke elements and possible flow turbulence.

The discharge coefficient  C_d  is a function of a choke narrowing ratio  \beta and Reynolds number  {\rm Re}:

(3) C_d = C_d(\beta, {\rm Re})

It can be estimated for popular choke types or tabulated in laboratory.

The most popular engineering correlation covering all ISO 5167 tapping arrangements is given by Discharge coefficient:

(4) C_d = \frac{d_D}{d} + 0.3167 \cdot \left( \frac{d}{d_D} \right)^{0.6} + 0.025 \cdot \big [ \log {\rm Re} - 4 \big ]



See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation (PFS) / Pipeline Choke @model

Pipeline Engineering / Pipeline / Choke 


Reference


Stolz,J.,"A Universal Equation for the Calculation of Discharge Coefficient  of Orifice Plates";, Proc. Flomeko 1978- Flow Measurement of Fluids,H. H. Dijstelbergenand E. A.Spencer(Eds), North-HollandPublishingCo.,Amsterdam(1978), pp 519-534



  • No labels