Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 40 Next »

A property characterizing agility of the fluid under pressure gradient as a ratio of reservoir permeability by dynamic fluid viscosity:

(1) M = \frac{k}{\mu}

where 

k

formation permeability to fluid

\mu

dynamic viscosity of fluid


In multiphase flow the concept of total fluid mobility is not well-defined as phases may have different mobilities and flow quite independently from each other, having different pressures, moving at different velocities and segregated in space.


But in most popular case of a 3-phase fluid model with relatively homogeneous flow (phases may move at different velocities but occupy the same reservoir space and have the same pressure) the multi-phase mobility may be defined by Perrine model:

(2) M = k_{air} \left[M_{rw} + \left( 1 + \frac{R_s \, B_g}{B_o} \right) \cdot M_{ro} + \left( 1 + \frac{R_v \, B_o}{B_g} \right) \cdot M_{rg} \right]


\displaystyle \Rightarrow

(3) \left<\frac{k}{\mu} \right> = k_{air} \left[ \frac{k_{rw}}{\mu_w} + \left( 1 + \frac{R_s \, B_g}{B_o} \right) \cdot \frac{k_{ro}}{\mu_o} + \left( 1 + \frac{R_v \, B_o}{B_g} \right) \cdot \frac{k_{rg}}{\mu_g} \right]



For the case of 2-phase Oil + Water fluid model (when Perrine model makes the most practical sense):

(4) M = k_{air} \left[ M_{rw} + M_{ro} \right]


\displaystyle \Rightarrow

(5) \left<\frac{k}{\mu} \right> = k_{air} \left[ \frac{k_{rw}}{\mu_w} + \frac{k_{ro}}{\mu_o} \right]



See also


Physics /  Fluid Dynamics / Percolation

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Reservoir Flow Simulation

Field Study & Modelling ] [ Phase mobilities ] [ Relative Phase mobilities ]


  • No labels