Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 17 Next »






Fig. 1. Flow and temperature pattern for Semispace Linear Conduction model.



Heat flow equation for Semispcae Linear Conduction:

(1) \frac{\partial T}{\partial t} = a^2 \Delta T = a^2\frac{\partial^2 T}{\partial z}

Initial Conditions

(2) T(t=0, z) = T_G(z)

Boundary conditions

(3) T(t, z=0) = T_f = {\rm const}, \quad T(t, z \rightarrow \infty) = T_G(z)

The exact solution is given by following formula:

(4) T(t,z) = T_f + (T_G(z) - T_f) \cdot \frac{2}{\sqrt{\pi}} \int_0^{z/\sqrt{4at}} e^{-\xi^2} d\xi

A fair approximation id given by following equation:

(5) T(t,z) = T_f + (T_G(z) - T_f) \cdot \Bigg[ 1- \frac{\exp(-\zeta^2)}{\sqrt{\pi} \zeta} \bigg( 1- \frac{1}{2 \zeta} + \frac{3}{4 \zeta^3} \bigg) \Bigg]

where

(6) \zeta = \frac{z}{4 a t}


The temperature gain from over- (under-) lying flow is going to be:


(7) dT(t, z) = T(t,z) - T_G(z)= - (T_G(z) - T_f) \cdot \frac{\exp(-\zeta^2)}{\sqrt{\pi} \zeta} \bigg( 1- \frac{1}{2 \zeta} + \frac{3}{4 \zeta^3} \bigg)





References


  • No labels