Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 17 Next »



Specific electrical resistivity  R_t or specific electrical conductivity   \sigma_t = \frac{1}{R_t} of formations is defined by mineralization of the rock matrix and saturating fluids which are in due turn depend on formation water-saturated shaliness  V_{sh} , formation porosity \phi_e and water saturation volumetric share  s_w.


Archie Model


Specific electrical resistivity  R_t is defined:

(1) \frac{1}{R_t} = \frac{\phi_e^m \, s_w^n }{A R_w} \quad \Rightarrow \quad s_w = \Big ( \frac{A}{\phi_e^m} \; \frac{R_w}{R_t} \Big) ^{1/n}


where

R_w

specific electrical resistivity of formation water

A


dimensionless constant, characterizing the rock matrix contribution to the total electrical resistivity

0.5 ÷ 1,

default value is 1 for sandstones and 0.9 for limestones

m

formation matrix cementation exponent1.5 ÷ 2.5, default value is 2

n

formation matrix water-saturation exponent

1.5 ÷ 2.5, default value is 2


Archie model is usually  used in:

  • high permeable clean sands with low or no shaliness

  • high permeable clean limestones with low or no shaliness


Indonesia Model (Poupon-Leveaux)


Indonesia model is the same Archie model:

(2) \frac{1}{R_t} = \frac{\phi_e^m \, s_w^n }{A R_w} \quad \Rightarrow \quad s_w = \Big ( \frac{A}{\phi_e^m} \; \frac{R_w}{R_t} \Big) ^{1/n}

where constant  A is defined by formation shaliness V_{sh}:

\frac{1}{A} = 1 + \Big( \frac{V_{sh}^{2-V_{sh}}}{\phi_e} \, \frac{R_w}{R_{sh}} \Big)^{1/2}

where

R_{sh}

specific electrical resisitvity fo shale


Simandeux Model


Simandeux model suggest a more complicated correlation between resitvity  R_t and water saturation  s_w:

(3) \frac{1}{R_t} = \frac{\phi_e^m \, s_w^n}{A R_w (1-V_{sh})} + \frac{V_{sh}}{R_{sh}} s_w^{n/2}   \quad \Rightarrow \quad s_w^{n/2} = \frac{A R_w (1-V_{sh})}{2 \phi_e^m} \, \Big( \sqrt{ \Big( \frac{V_{sh}}{R_{sh}} \Big)^2 + \frac{4\phi_e^m}{a R_t R_w (1-V_{sh}) } } - \frac{V_{sh}}{R_{sh}} \Big)

with default value  A = 0.8.


Dual-Water Model (DW)


The dual-water model accounts for the fact that different shales have different shale-bound water saturation  s_{wb}= \frac{V_{wb}}{V_t}:

\phi_t = \phi_e + \phi_t s_{wb}

so that formation water saturation  s_w is related to total water saturation  s_{wt} = \frac{V_{wb} + V_w}{V_t } as:

s_w = \frac{s_{wt} - s_{wb}}{ 1 - s_{wb}}

Rock volume V is a sum of rock matrix volume V_m and total pore volume V_t:

V = V_m + V_t = (1-\phi_t) V + \phi_t V

where

\phi_t = \frac{V_t}{V}

Total pore volume  V_t is a sum of shale-bound water  V_{wb} and free fluid volume  V_e (water and hydrocarbons):

V_t = \phi_t V = V_e + V_{wb} = \phi_e V + s_{wb} V_t

where

V_e = V_t (1 - s_{wb})

and therefore:

\phi_e = \phi_t (1 - s_{wb})

Total volume of water is a sum of shale-bound water  V_{wb} and free water  V_{wf}:

V_{wt} = V_{wb} + V_{wf}

and relates to  V_t as:

s_{wt} V_t = s_{wb} V_t + s_w V_e = s_{wb} V_t + s_w V_t (1 - s_{wb})

or

s_{wt} = s_{wb} + s_w (1 - s_{wb})

which gives an explicit formula for formation water saturation:

s_w = \frac{s_{wt} - s_{wb}}{ 1 - s_{wb}}


Formation resistivity  R_t is given by the following correlation:

\frac{1}{R_t} = \phi_t^m s_{wt}^n \, \Big[ \frac{1}{R_w} + \frac{s_{wb}}{s_{wt}} \Big( \frac{1}{R_{wb}} - \frac{1}{R_w} \Big) \Big] \quad \Rightarrow \quad s_w = \frac{s_{wt} - s_{wb}}{ 1 - s_{wb}}

where

s_{wb} = \frac{V_{wb}}{V_t}

shale-bound water saturation

s_{wt} = \frac{V_{wb} + V_w}{V_t}

total water saturation (shal-bound water and free-water)

R_{wb}

specific electrical resisitvity of shale-bound water

In simple case when all shales have the same properties, the shale-bound water saturation can be expressed through the shaliness as:

(4) s_{wb} = \zeta_{wb} V_{sh}


Waxman-Smits-Thomas Model (WST )


Formation resistivity  R_t is given by the following correlation:

\frac{1}{R_t} = \phi_t^m s_{wt}^n \, \Big[ \frac{1}{R_w} +\frac{B Q_V}{s_{wt}} \Big]

which is similar to dual-water with complex parameter  B Q_V relating to:

B Q_V = s_{wb} \Big( \frac{1}{R_{wb}} - \frac{1}{R_w} \Big)

In some opractical cases, the kaboiratiry data is available on   B and  Q_V separately, but still need calibration on core data.



References




  • No labels