Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 206 Next »





Definition



Primary Production Analysis is the specific workflow and report template on Primary Well & Reservoir Performance Indicators.


Application



  • Assess current production performance

    • current distribution of recovery against expectations

    • current status and trends of recovery against expectations

    • current status and trends of reservoir depletion against expectations
       
    • current status and trends of water flood efficiency against expectations

    • compare performance of different wells or different groups of wells 

  • Identify and prioritize surveillance opportunities

  • Identify and prioritize redevelopment opportunities


Technology



Primary Production Analysis is built around production data against material balance and require current FDP volumetrics, PVT and SCAL models. 


The PRIME workflow has certain specifics for oil producers, water injectors, gas injectors and field/sector analysis. 


The PRIME analysis is

  • fast-track

  • based on the most robust input data

  • does not involve full-field 3D dynamic modelling and associtated assumptions


Obviously, PRIME does not pretend to predict pressure and reserves distribution as 3D dynamic model does.


It only provides hints for misperoforming wells and sectors which need a further focus.




Metric nameDiagnostic plotsObjectives
1Production History Map

Background = Structure

Bubbles = qo, qg , qw, qinj

Number = CurVRR, Pe

Production Distribution Overview
2Recovery Map

Background = STOIIP

Bubbles = Qo, Qg , Qw, Qinj

Number = CumVRR, Pe

Recovery Distribution Overview
3Cross-section

Background = STOIIP & Structure

Bubbles = VRR

Number = Pe , Pem

Vertical Flow Proifle Overview
3Production History Graphs

Left Axis = qo, qg , qw, qinj,

Rigth Axis = Yw, GOR, Pe , Np, Ninj

Hor Axis = Elapsed Time

Production History Overview
4

Decline Curve Analysis

Left Axis = qo1, qliq1, qinj1,

Rigth Axis = Yw, GOR, VRR, Pe

Hor Axis = Elapsed Time

Production Forecast
5Recovery Diagnostic

Left Axis = qo1, qliq1, qinj1

Rigth Axis =Yw, GOR, VRR, Pe, Pem

Hor Axis = RF

Estimate recovery efficiency and pressure decline
6Watercut Diagnostic

Left Axis = Yw, Ywm

Hor Axis = qliq

Check for water balance and thief water production
7GOR Diagnostic

Left Axis = GOR, GORgm

Hor Axis =qo

Check for gas balance and thief gas production
8

Injection Efficiency Diagnostics

Left Axis = PIR , PIRm

Hor Axis = Yw

Evaluate WI efficiency
9Well Performance Analysis

Left Axis = Pwf_IPR , Pwf_VLP

Hor Axis = qo

Check for the optimal production/injection target
10

Productivity Index Diagnostic

Left Axis = JPI, JPIm

Hor Axis = dP = Pwf - Pe

Check for PI dynamics



Property AbbrevyProperty NameFormula
VRRcum

Cumulative Voidage Replacement Ratio

(1) {\rm VRR_{cum}} = \frac{B_w \, Q_{WI}}{B_w \, Q_W + B_o \, Q_O + B_g Q_G - B_g R_s Q_O}
VRRcur

Current Voidage Replacement Ratio

(month over month)

(2) {\rm VRR_{cur}} = \frac{B_w \, q_{WI}}{B_w \, q_W + B_o \, q_O + B_g (q_G - R_s Q_O)}
RF

Recovery Factor


(3) {\rm RF} = \frac{Q_O}{V_{STOIIP}}
Yw

Watercut (production)

(4) {\rm Y_w} = \frac{q_W}{q_{LIQ}}
YwmWatercut (proxy-model)
(5) {\rm Y_{wm}} = \frac{1}{1 + \frac{K_{ro}}{K_{rw}} \cdot \frac{ \mu_w}{\mu_o} \cdot \frac{B_w}{B_o} }
(6) s_w = \frac{Q_o \, B_o}{V_\phi}
GORGas-Oil Ratio (production)
(7) {\rm GOR} = \frac{q_g}{q_o}
GOR_mGas-Oil Ratio (proxy-model)
(8) {\rm GOR_m} = R_s + \frac{k_{rg}}{k_{ro}}  \cdot \frac{\mu_o}{\mu_g} \cdot \frac{B_o }{B_g}
qLIQLiquid rate
(9) q_{LIQ} = q_O + q_W

PIR

Production Injection Ratio (production)


(10) {\rm PIR} = \frac{Q_O}{Q_{WI}}
PIRmProduction Injection Ratio (model)
(11) {\rm PIR_m} = { \frac{1}{VRR} } \cdot { \frac{1-Y_w}{ Y_w + (1-Y_w) \bigg[ \frac{B_o}{B_w} - \frac{B_g}{B_w}(GOR - R_s) \bigg] } }
JOOil Productivity Index
(12) {\rm J_{O}} = \frac{q_O}{P_e - P_{wf}} {\quad \Rightarrow \quad} P_{wf} = P_e - \frac{1}{J_O} q_O

JPI

Total Productivity Index (production)


(13) {\rm J_t} = \frac{q_t}{P_e - P_{wf}}
JPImTotal Productivity Index (model)
(14) {\rm J_{tm} } = \frac{2 \pi \sigma}{\ln \frac{r_e}{r_w} +0.5 + S}
jPITotal Specific Productivity Index
(15) {\rm j_t} = \frac{q_t}{h \cdot (P_e - P_{wf})}
jPImTotal Specific Productivity Index (model)
(16) {\rm j_{tm} } = \frac{2 \pi <k/\mu>}{\ln \frac{r_e}{r_w} +0.5 + S}
(17) VRR = \frac{B_w \, q_{WI}}{B_w \, q_W + B_o \, q_O + B_g \, [ q_G - R_s \, q_O] } = \frac{B_w \, q_{WI}}{B_w \, q_W + B_o \, q_O + B_g \, [ GOR - R_s] q_O } = \frac{B_w \, q_{WI}}{B_w \, q_W + [ B_o + B_g \, ( GOR - R_s) ] \, q_O }
(18) VRR = \frac{q_{WI}}{q_W + \bigg[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] \, q_O }
(19) Y_w=\frac{q_W}{q_W + q_O} \rightarrow \frac{q_O}{q_W} = \frac{1-Y_w}{Y_w} \rightarrow q_W = \frac{Y_w}{1-Y_w} \, q_O
(20) VRR = \frac{q_{WI}}{q_O} \cdot \frac{1}{\frac{Y_w}{1-Y_w} + \bigg[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] } = \frac{q_{WI}}{q_O} \cdot \frac{1-Y_w}{Y_w + (1-Y_w) \, \bigg[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] }
(21) PIR=\frac{q_W}{q_{WI}} = \frac{1}{VRR} \cdot \frac{1-Y_w}{Y_w + (1-Y_w) \, \bigg[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] }

 ›   PRIME Diagnostics



Sample Case 1 – Waterflood Sector Analysis



Fig. 1.1. Production History Map

Fig. 1.2. Recovery Map


Fig. 2.1. Cross-section & PLT, permeability, GOC, OWCFig. 2.2. Cross-section & PLT, STOIIP, GOC, OWC


Fig. 3.1. Production History Graphs
Fig. 3.2. Production Forecasts


Fig. 4.1. Recovery HistoryFig. 4.2. Recovery Forecasts




Fig. 5.1. WOR DiagnosticFig. 5.2. GOR Diagnostic


Fig. 6.1. Specific Productivity Index DiagnosticFig. 6.2. Specific Injectivity Index Diagnostic





Fig. 7. Injection Efficiency Diagnostics



Sample Case 2 – Oil Producer Analysis


Fig. 1.1 Production History MapFig. 1.2. Recovery Map


Fig. 2.1. Cross-section & PLT, permeability, GOC, OWCFig. 2.2 Cross-section & PLT



Fig. 3.1. Production History GraphsFig. 3.2. Decline Curve Analysis


Fig. 4.1. Recovery DiagnosticFig. 4.2. Recovery Diagnostic


Fig. 5.1. Watercut Diagnostic

Fig. 5.2. GOR Diagnostic


Fig. 6. Well Performance Analysis (VFP + IPR)Fig. 7. Productivity Index Diagnostic



Fig.8. Well Completion & PLT

Sample Case 3 – Water Injector Analysis



Fig. 1.1. Production History MapFig. 1.2. Recovery Map


Fig. 2.1. Cross-section & PLTFig. 2.2. Cross-section & PLT


Fig. 3.1. Injection History GraphsFig. 3.2. Injection Efficiency Diagnostics


Fig. 4. Well Performance Analysis (VFP + IPR)Fig. 5. Injectivity Index Diagnostic



Fig. 6. Well Completion & PLT


  • No labels