Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 106 Next »



Definition



Primary Production Analysis is the specific workflow and report template on Primary Well & Reservoir Performance Indicators.


Application



  • assess current production distribution

  • assess current distribution of recovery against expectations

  • assess current status and trends of recovery against expectations

  • assess current status and trends of reservoir depletion against expectations
     
  • assess current status and trends of water flood efficiency against expectations

  • quantitatively compare performance of different wells or different groups of wells 

  • identify and prioritize redevelopment opportunities


Technology



Primary Production Analysis is built around production data against material balance and require current FDP volumetrics, PVT and SCAL models. 


It includes well-by-well diagnostics and gross field diagnostics, but may be extended to sector-by-sector diagnostics.


Metrics



Primary Production Analysis includes the following metrics:


Metric nameDiagnostic plotsObjectives
1Production History Map

Background = Structure

Bubbles = qo, qg , qw, qinj

Number = CurVRR, Pe

Production Distribution Overview
2Recovery Map

Background = STOIIP

Bubbles = Qo, Qg , Qw, Qinj

Number = CumVRR, Pe

Recovery Distribution Overview
3Cross-section

Background = STOIIP & Structure

Bubbles = VRR

Number = Pe , Pem


3Production History Graphs

Left Axis = qo, qg , qw, qinj,

Rigth Axis = Yw, GOR, Pe , Np, Ninj

Hor Axis = Elapsed Time

Production History Overview
4

Decline Curve Analysis

Left Axis = qo1, qliq1, qinj1,

Rigth Axis = Yw, GOR, VRR, Pe

Hor Axis = Elapsed Time

Production Forecast
5Recovery Diagnostic

Left Axis = qo1, qliq1, qinj1

Rigth Axis =Yw, GOR, VRR, Pe, Pem

Hor Axis = RF

Estimate recovery efficiency and pressure decline
6Watercut Diagnostic

Left Axis = Yw, Ywm

Hor Axis = qliq

Check for water balance and thief water production
7GOR Diagnostic

Left Axis = GOR, GORgm

Hor Axis =qo

Check for gas balance and thief gas production
8

Injection Efficiency Diagnostics

Left Axis = PIR , PIRm

Hor Axis = Yw

Evaluate WI efficiency
9Well Performance Analysis

Left Axis = Pwf_IPR , Pwf_VLP

Hor Axis = qo

Check for the optimal production/injection target
10

Productivity Index Diagnostic

Left Axis = JPI, JPIm

Hor Axis = dP = Pwf - Pe

Check for PI dynamics


Below is the list of the production properties  involved in the above metrics.

Property AbbrevyProperty NameFormula
VRRcum

Cumulative Voidage Replacement Ratio

(1) {\rm VRR_{cum}} = \frac{B_w \, Q_{WI}}{B_w \, Q_W + B_o \, Q_O + B_g Q_G - B_g R_s Q_O}
VRRcur

Current Voidage Replacement Ratio

(month over month)

(2) {\rm VRR_{cur}} = \frac{B_w \, q_{WI}}{B_w \, q_W + B_o \, q_O + B_g (q_G - R_s Q_O)}
RF

Recovery Factor


(3) {\rm RF} = \frac{Q_O}{V_{STOIIP}}
Yw

Watercut (production)

(4) {\rm Y_w} = \frac{q_W}{q_{LIQ}}
YwmWatercut (proxy-model)
(5) {\rm Y_{wm}} = \frac{1}{1 + \frac{K_{ro}}{K_{rw}} \cdot \frac{ \mu_w}{\mu_o} \cdot \frac{B_w}{B_o} }
(6) s_w = \frac{Q_o \, B_o}{V_\phi}
GORGas-Oil Ratio (production)
(7) {\rm GOR} = \frac{q_g}{q_o}
GOR_mGas-Oil Ratio (proxy-model)
(8) {\rm GOR_m} = R_s + \frac{k_{rg}}{k_{ro}}  \cdot \frac{\mu_o}{\mu_g} \cdot \frac{B_o }{B_g}
qLIQLiquid rate
(9) q_{LIQ} = q_O + q_W

PIR

Production Injection Ratio (production)


(10) {\rm PIR} = \frac{Q_O}{Q_{WI}}
PIRmProduction Injection Ratio (model)
(11) {\rm PIR_m} = { \frac{1}{VRR} } \cdot { \frac{1-Y_w}{ Y_w + (1-Y_w) \bigg[ \frac{B_o}{B_w} - \frac{B_g}{B_w}(GOR - R_s) \bigg] } }
JOOil Productivity Index
(12) {\rm J_{O}} = \frac{q_O}{P_e - P_{wf}} {\quad \Rightarrow \quad} P_{wf} = P_e - \frac{1}{J_O} q_O

JPI

Total Productivity Index (production)


(13) {\rm J_t} = \frac{q_t}{P_e - P_{wf}}
JPImTotal Productivity Index (model)
(14) {\rm J_{tm} } = \frac{2 \pi \sigma}{\ln \frac{r_e}{r_w} +0.5 + S}



(15) VRR = \frac{B_w \, q_{WI}}{B_w \, q_W + B_o \, q_O + B_g \, [ q_G - R_s \, q_O] } = \frac{B_w \, q_{WI}}{B_w \, q_W + B_o \, q_O + B_g \, [ GOR - R_s] q_O } = \frac{B_w \, q_{WI}}{B_w \, q_W + [ B_o + B_g \, ( GOR - R_s) ] \, q_O }
(16) VRR = \frac{q_{WI}}{q_W + \bigg[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] \, q_O }
(17) Y_w=\frac{q_W}{q_W + q_O} \rightarrow \frac{q_O}{q_W} = \frac{1-Y_w}{Y_w} \rightarrow q_W = \frac{Y_w}{1-Y_w} \, q_O
(18) VRR = \frac{q_{WI}}{q_O} \cdot \frac{1}{\frac{Y_w}{1-Y_w} + \bigg[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] } = \frac{q_{WI}}{q_O} \cdot \frac{1-Y_w}{Y_w + (1-Y_w) \, \bigg[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] }
(19) PIR=\frac{q_W}{q_{WI}} = \frac{1}{VRR} \cdot \frac{1-Y_w}{Y_w + (1-Y_w) \, \bigg[ \frac{B_o}{B_w} + \frac{B_g}{B_w} \, ( GOR - R_s) \bigg] }


Diagnostic





Sample Case 1 – Sector Analysis



Fig. 1. Production History Map

Fig. 2. Recovery Map
Fig. 3. Cross-section & PLT, permeability, GOC, OWC




Fig. 4. Production History Graphs
Fig. 5. Decline Curve AnalysisFig. 6. Recovery Diagnostic







Fig. 7. Watercut DiagnosticFig. 8. GOR DiagnosticFig. 9. Injection Efficiency Diagnostics





Fig. 10. Well Performance Analysis (VFP + IPR)Fig. 11. Productivity Index DiagnosticFig. 12. Well Completion & PLT


Sample Case 2 – Producer Analysis




Fig. 1. Production History Map

Fig. 2. Recovery MapFig. 3. Cross-section & PLT




Fig. 4. Production History GraphsFig. 5. Decline Curve AnalysisFig. 6. Recovery Diagnostic






Fig. 7. Watercut DiagnosticFig. 8. GOR DiagnosticFig. 9. Injection Efficiency Diagnostics





Fig. 10. Well Performance Analysis (VFP + IPR)Fig. 11. Productivity Index DiagnosticFig. 12. Well Completion & PLT


Sample Case 3 – Injector Analysis




Fig. 1. Production History Map

Fig. 2. Recovery MapFig. 3. Cross-section & PLT





Fig. 4. Production History Graphs






Fig. 10. Well Performance Analysis (VFP + IPR)Fig. 11. Injectivity Index DiagnosticFig. 12. Well Completion & PLT


  • No labels