Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 17 Next »

Given:

  • a function  q^*(t, {\bf p}) of real-value argument  t \in \R and set of model parameters  {\bf p} = \{ p_m\}_{m = 1..M} = \{p_1, p_2, ... p_M\}
  • a training data set:  \{ (t_k, q_k)\}_{k = 1..N} = \{ (t_0, a_0), (t_1, q_1), ..., (t_N, q_N) \}

the matching procedure assumes searching for thee specific set of model parameters  {\bf p} to minimize the goal function:

F({\bf p}) = \sum_{k=1}^N \, \Psi \left( q^*(t_k) - q_k \right) \rightarrow \textrm{min}

where  \Psi(z) is the discrepancy distance function.

Most popular choices are \Psi(z) = z^2 and \Psi(z) = |z|.


There are few approaches to match the Arps decline to the historical data:



Unconstrained matching

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline

b=0

0<b<1

b=1

(1) q(t)=q_0 \exp \left( -D_0 \, t \right)
(2) q(t) = \frac{q_0}{ \left( 1+b \cdot D_0 \cdot t \right)^{1/b} }
(3) q(t)=\frac{q_0}{1+D_0 \, t}
(4) Q(t)=\frac{q_0-q(t)}{D_0}
(5) Q(t)=\frac{q_0}{D_0 \, (1-b)} \, \left[ 1- \left( \frac{q(t)}{q_0} \right)^{1-b} \right]
(6) Q(t)=\frac{q_0}{D_0} \, \ln \left[ \frac{q_0}{q(t)} \right] =  \frac{q_0}{D_0} \ln q_0 + \frac{q_0}{D_0} \cdot \ln q(t)


Match the value of the initial rate  q^*(t=0) = q_0


Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline

b=0

0<b<1

b=1

(7) q(t)=q_0 \exp \left( -D_0 \, t \right)
(8) q(t) = \frac{q_0}{ \left( 1+b \cdot D_0 \cdot t \right)^{1/b} }
(9) q(t)=\frac{q_0}{1+D_0 \, t}
(10) Q(t)=\frac{q_0-q(t)}{D_0}
(11) Q(t)=\frac{q_0}{D_0 \, (1-b)} \, \left[ 1- \left( \frac{q(t)}{q_0} \right)^{1-b} \right]
(12) Q(t)=\frac{q_0}{D_0} \, \ln \left[ \frac{q_0}{q(t)} \right] =  \frac{q_0}{D_0} \ln q_0 + \frac{q_0}{D_0} \cdot \ln q(t)


Match the value of the current rate  q^*(t=t_N) = q_N


To ensure the smooth transition from historical data [(t_1,q_1)... (t_N, q_N)] to the production forecasts in future time moments [(t_{N+1},q_{N+1}), ...] one may wish to constrain the model by firm matching the production at the last historical moment (t_N, q_N) which leads to the following form of Arp's model:

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline

b=0

0<b<1

b=1

(13) q(t)=q_N \cdot \exp \big[ -D_0 \cdot (t-t_N) \big]
(14) q(t) = q_N \cdot \left[ \frac{1+b \cdot D_0 \cdot t_N } { 1+b \cdot D_0 \cdot t } \right]^{1/b}
(15) q(t) = q_N \cdot \left[ \frac{1+D_0 \cdot t_N } { 1+ D_0 \cdot t } \right]
(16) Q(t) - Q_N = [ q_N - q(t)] \, \tau_0
(17) Q(t) - Q_N = \frac{q_N^b \, (\tau_0 + b \, t_N)}{1-b} \left[ q_N^{1-b} - q^{1-b}(t) \right]
(18) Q(t) - Q_N = q_N \, (\tau_0 + t_N) \cdot \ln \frac{q_N}{q(t)}


Match the value of the current cumulative  Q^*(t=t_N) = Q_N


To ensure the smooth transition from historical data [(t_1,q_1)... (t_N, q_N)] to the production forecasts in future time moments [(t_{N+1},q_{N+1}), ...] one may wish to constrain the model by firm matching the production at the last historical moment (t_N, q_N) which leads to the following form of Arp's model:

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline

b=0

0<b<1

b=1

(19) q(t)=q_N \cdot \exp \big[ -D_0 \cdot (t-t_N) \big]
(20) q(t) = q_N \cdot \left[ \frac{1+b \cdot D_0 \cdot t_N } { 1+b \cdot D_0 \cdot t } \right]^{1/b}
(21) q(t) = q_N \cdot \left[ \frac{1+D_0 \cdot t_N } { 1+ D_0 \cdot t } \right]
(22) Q(t) - Q_N = [ q_N - q(t)] \, \tau_0
(23) Q(t) - Q_N = \frac{q_N^b \, (\tau_0 + b \, t_N)}{1-b} \left[ q_N^{1-b} - q^{1-b}(t) \right]
(24) Q(t) - Q_N = q_N \, (\tau_0 + t_N) \cdot \ln \frac{q_N}{q(t)}





See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Decline Curve Analysis / DCA Arps @model




  • No labels