Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation

...

One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

...

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe

LaTeX Math Inline
bodyq(l)

Flowrate distribution along the pipe

LaTeX Math Inline
bodyu(l)

Flow velocity distribution along the pipe

Inputs

...

LaTeX Math Inline
bodyT_0

Intake temperature 

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 

LaTeX Math Inline
bodyp_0

Intake pressure 

LaTeX Math Inline
body\rho(T, p)


LaTeX Math Inline
bodyq_0

Intake flowrate 

LaTeX Math Inline
body\mu(T, p)


LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  
LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness

Assumptions

...

Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Incompressible fluid  

LaTeX Math Inline
body\rho(T, p)=\rho_0 = \rm const

Isoviscous flow  

LaTeX Math Inline
body\mu(T, p) = \mu_0 = \rm const

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole


Equations

...

Pressure profilePressure gradient profile


LaTeX Math Block
anchorPPconst
alignmentleft
p(l) = p_0 + \rho_0 \, g \, \Delta z(l) - \frac{\rho_0 \, q_0^2 }{2 A^2 d} \, f_0 \, l



LaTeX Math Block
anchorgradP
alignmentleft
\frac{dp}{dl} = \rho_0 \, g \cos \theta(l) - \frac{\rho_0 \, q_0^2 }{2 A^2 d} \, f_0


Mass FluxMass Flowrate


LaTeX Math Block
anchorMassFlux
alignmentleft
j_m = \rho_0 \cdot \sqrt{\frac{2 \, d}{f_0 \, l }} \cdot \sqrt{g \, \Delta z(l) + (p_0 - p)/ \rho_0}



LaTeX Math Block
anchorMassFlowrate
alignmentleft
\dot m = j_m \cdot A = \rho_0 \cdot A \cdot \sqrt{\frac{2 \, d}{f_0 \, l }} \cdot \sqrt{g \, \Delta z(l) + (p_0 - p)/ \rho_s}


 Volumetric Flowrate

Intake Fluid velocity


LaTeX Math Block
anchorPPconst
alignmentleft
q_0 = \dot m / \rho_0 = A \cdot \sqrt{\frac{2 \, d }{ f_0 \, l }} \cdot \sqrt{  g \, \Delta z(l) + (p_0 - p)/ \rho_s }



LaTeX Math Block
anchorPPconst
alignmentleft
u_0 = j_m/ \rho_0 =q_0 / A = \sqrt{\frac{2 \, d }{ f_0 \, l }} \cdot \sqrt{  g \, \Delta z(l) + (p_0 - p)/ \rho_s }


...

In most practical applications in water producing or water injecting wells, water can be considered as incompressible and friction factor  can be assumed constant

LaTeX Math Inline
body f(l) = f_0 = \rm const
 along-hole ( see  Darcy friction factor in water producing/injecting wells ).



References

...

Show If
grouparax


Panel
bgColorpapayawhip
titleARAX




...