##### Page tree
Go to start of banner

# Motivation

One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

Outputs

 $//$ Pressure distribution along the pipe $//$ Flowrate distribution along the pipe $//$ Flow velocity distribution along the pipe

# Inputs

 $//$ Intake temperature $//$ Fluid density $//$ Intake pressure $//$ $//$ Intake flowrate $//$ $//$ Pipeline trajectory TVDss $//$ Inner pipe wall roughness $//$ Pipeline trajectory inclination, $//$

# Assumptions

 Steady-State flow Isothermal $//$ $//$ Homogenous flow Constant cross-section pipe area $//$ along hole $//$ $//$ Incompressible fluid $//$ → $//$

# Equations

 (1)
 (2)
Mass FluxMass Flowrate
 (3)
 (4)

Volumetric Flowrate

Intake Fluid velocity

 (5)
 (6)

where

 $//$ Intake mass flux $//$ mass flowrate $//$ Intake Fluid velocity $//$ elevation drop along pipe trajectory $//$ Darcy friction factor at intake point $//$ Reynolds number at intake point $//$ characteristic linear dimension of the pipe(or exactly a pipe diameter in case of a circular pipe)

Derivation

Incompressible fluid $//$ means that compressibility vanishes $//$ and fluid velocity is going to be constant along the pipeline trajectory $//$.

For the constant viscosity $//$ along the pipeline trajectory the Reynolds number $//$ and Darcy friction factor $//$ are going to be constant along the pipeline trajectory.

Equation (7) becomes:

 (7)

which leads to (2) after substituting $//$  and can be explicitly integrated leading to (1).

The first term in the right side of
(2) defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:

In most practical applications in
water producing or water injecting wells, water can be considered as incompressible and friction factor  can be assumed constant $//$ along-hole ( see  Darcy friction factor in water producing/injecting wells ).