Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation

...

One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

...

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Outputs

...

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe

LaTeX Math Inline
bodyq(l)

Flowrate distribution along the pipe

LaTeX Math Inline
bodyu(l)

Flow velocity distribution along the pipe

Inputs

...

LaTeX Math Inline
bodyT_s0

Intake temperature 

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 

LaTeX Math Inline
bodyp_s0

Intake pressure 

LaTeX Math Inline
body\rho(T, p)

Fluid density 

LaTeX Math Inline
bodyq_s0

Intake flowrate 

LaTeX Math Inline
body\mu(T, p)

LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  
LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness

Assumptions

...

Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole


Equations

...


LaTeX Math Block
anchorPP
alignmentleft
\left( 1 -  \frac{\rho_s^20^2 \, q_s^20^2}{A^2} \cdot \frac{c(p)}{\rho}   \right)  \frac{dp}{dl} = \rho \, g \, \cos \theta(l)  - \frac{\rho_s^20^2 \, q_s^20^2 }{2 A^2 d} \frac{f({\rm Re}, \, \epsilon)}{\rho}



LaTeX Math Block
anchorp0
alignmentleft
p(l=0) = p_s0




LaTeX Math Block
anchor1
alignmentleft
u(l) = \frac{\rho_s0 \cdot q_s0}{\rho(T(l), p(l))) \cdot A}



LaTeX Math Block
anchor1
alignmentleft
q(l) = \frac{\rho_s0 \cdot q_s0}{\rho(T(l),p(l))}


where

LaTeX Math Inline
bodyq_s 0 = q(l=0)

fluid flow rate at pipe intake

LaTeX Math Inline
body\rho_s 0 = \rho(T_s0, p_s0)

fluid density at intake temperature and pressure

LaTeX Math Inline
bodyс(p)

Fluid Compressibility

LaTeX Math Inline
body--uriencoded--f(%7B\rm Re%7D, \, \epsilon)

Darcy friction factor

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D = \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D = \frac%7B4 \rho_s 0 q_s%7D%7B0%7D%7B\pi d%7D \frac%7B1%7D%7B\mu(T, p)%7D

Reynolds number

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

...

...