Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Inline
bodyT_0

Intake temperature 

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 

LaTeX Math Inline
bodyp_0

Intake pressure 

LaTeX Math Inline
body\rho(T, p)


LaTeX Math Inline
bodyq_0

Intake flowrate 

LaTeX Math Inline
body\mu(T, p)


LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  
LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness

Assumptions

...

Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole


Equations

...

Pressure profile along the pipe


LaTeX Math Block
anchorPressureProfile
alignmentleft
F(p, l)=\left(  \frac{1}{\rho^2} - \frac{1}{\rho_0^2}   \right)  
+ \left(  \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2}   \right)  
\cdot \frac{l}{ 2 \, d}  - (2/j_m^2) \,  \int_p^{p_0} \frac{dp}{\rho} - (2/j_m^2) \, g \, \Delta z(l) = 0


Mass Flowrate


LaTeX Math Block
anchorMassFlowrate
alignmentleft
\dot m =  
A \cdot \sqrt{ 2 \cdot \frac
{
g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho}
}
{
\left( \frac{1}{\rho^2} - \frac{1}{\rho_0^2} \right) 
+ \left( \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2} \right) 
\cdot \frac{l}{ 2 \, d}
}
}


Intake  Volumetric Flowrate


LaTeX Math Block
anchorVolumtericFlowrate
alignmentleft
q_0 =  
\frac{A}{\rho_s} \cdot \sqrt{ 2 \cdot \frac
{
g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho}
}
{
\left( \frac{1}{\rho^2} - \frac{1}{\rho_0^2} \right) 
+ \left( \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2} \right) 
\cdot \frac{l}{ 2 \, d}
}
}


Mass Flux


LaTeX Math Block
anchorMassFlux
alignmentleft
j_m =  \sqrt{ 2 \cdot \frac
{
g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho}
}
{
\left(  \frac{1}{\rho^2} - \frac{1}{\rho_0^2}   \right)  
+ \left(  \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2}   \right)  
\cdot \frac{l}{ 2 \, d}
}
}


...