Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Inline
bodyT_0

Intake temperature 

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 

LaTeX Math Inline
bodyp_0

Intake pressure 

LaTeX Math Inline
body\rho(T, p)


LaTeX Math Inline
bodyq_0

Intake flowrate 

LaTeX Math Inline
body\mu(T, p)


LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  
LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness

Assumptions

...

Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole


Equations

...

Pressure profile along the pipe


LaTeX Math Block
anchorPressureProfile
alignmentleft
F(p, l)=\left(  \frac{1}{\rho^2} - \frac{1}{\rho_0^2}   \right)  
+ \left(  \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2}   \right)  
\cdot \frac{l}{ 2 \, d}  - (2/j_m^2) \,  \int_p^{p_0} \frac{dp}{\rho} - (2/j_m^2) \, g \, \Delta z(l) = 0


Mass Flowrate


LaTeX Math Block
anchorMassFlowrate
alignmentleft
\dot m =  
A \cdot \sqrt{ 2 \cdot \frac
{
g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho}
}
{
\left( \frac{1}{\rho^2} - \frac{1}{\rho_0^2} \right) 
+ \left( \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2} \right) 
\cdot \frac{l}{ 2 \, d}
}
}


Intake  Volumetric Flowrate


LaTeX Math Block
anchorVolumtericFlowrate
alignmentleft
q_0 =  
\frac{A}{\rho_s} \cdot \sqrt{ 2 \cdot \frac
{
g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho}
}
{
\left( \frac{1}{\rho^2} - \frac{1}{\rho_0^2} \right) 
+ \left( \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2} \right) 
\cdot \frac{l}{ 2 \, d}
}
}


Mass Flux


LaTeX Math Block
anchorMassFlux
alignmentleft
j_m =  \sqrt{ 2 \cdot \frac
{
g \, \Delta z + \int_p^{p_0} \frac{dp}{\rho}
}
{
\left(  \frac{1}{\rho^2} - \frac{1}{\rho_0^2}   \right)  
+ \left(  \frac{f}{\rho^2} + \frac{f_0}{\rho_0^2}   \right)  
\cdot \frac{l}{ 2 \, d}
}
}


...

LaTeX Math Inline
body\rho_0 = \rho(T_0, p_0)

Intake fluid density 

LaTeX Math Inline
body--uriencoded--\displaystyle j_m = \frac%7B \dot m / A%7D%7B A%7D

Intake mass flux

LaTeX Math Inline
body--uriencoded--\displaystyle \dot m = \frac%7Bdm %7D%7B dt%7D

mass flowrate

LaTeX Math Inline
body--uriencoded--\displaystyle q_0 = \frac%7BdV_0%7D%7Bdt%7D = \frac%7B \dot m / %7D%7B \rho_00%7D

Intake flowrate 

LaTeX Math Inline
body\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

LaTeX Math Inline
body--uriencoded--f(T,p) = f(%7B\rm Re%7D(T,p), \, \epsilon)

Darcy friction factor at intake point 

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D(T,p) = \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D = \frac%7B4 \rho_0 q_0%7D%7B\pi d%7D \frac%7B1%7D%7Bfrac%7Bj_m \cdot d%7D%7B\mu(T,p)%7D

Reynolds number at intake point 

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

...