Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Inputs

...

LaTeX Math Inline
bodyT_s0

Intake temperature 

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 

LaTeX Math Inline
bodyp_s0

Intake pressure 

LaTeX Math Inline
body\rho(T, p)


LaTeX Math Inline
bodyq_s0

Intake flowrate 

LaTeX Math Inline
body\mu(T, p)


LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  
LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness

...

Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Incompressible fluid  

LaTeX Math Inline
body\rho(T, p)=\rho_s 0 = \rm const

Isoviscous flow  

LaTeX Math Inline
body\mu(T, p) = \mu_s 0 = \rm const

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole

...

Pressure profilePressure gradient profile


LaTeX Math Block
anchorPPconst
alignmentleft
p(l) = p_s0 + \rho_s \, g \, \Delta z(l) - \frac{\rho_s0 \, q_s^20^2 }{2 A^2 d} \, f_s0 \, l



LaTeX Math Block
anchorgradP
alignmentleft
\frac{dp}{dl} = \rho_s0 \, g \cos \theta(l) - \frac{\rho_s0 \, q_s^20^2 }{2 A^2 d} \, f_s0


Mass FluxMass Flowrate


LaTeX Math Block
anchorMassFlux
alignmentleft
j_m = \rho_s0 \cdot \sqrt{\frac{2 \, d}{f_s0 \, l }} \cdot \sqrt{g \, \Delta z(l) + (p_s0 - p)/ \rho_s0}



LaTeX Math Block
anchorMassFlowrate
alignmentleft
\dot m = j_m \cdot A = \rho_s0 \cdot A \cdot \sqrt{\frac{2 \, d}{f_s0 \, l }} \cdot \sqrt{g \, \Delta z(l) + (p_s0 - p)/ \rho_s}


 Volumetric Flowrate

Intake Fluid velocity


LaTeX Math Block
anchorPPconst
alignmentleft
q_s0 = \dot m / \rho_s0 = A \cdot \sqrt{\frac{2 \, d }{ f_s0 \, l }} \cdot \sqrt{  g \, \Delta z(l) + (p_s0 - p)/ \rho_s }



LaTeX Math Block
anchorPPconst
alignmentleft
u_s0 = j_m/ \rho_s0 =q_s0 / A = \sqrt{\frac{2 \, d }{ f_s0 \, l }} \cdot \sqrt{  g \, \Delta z(l) + (p_s0 - p)/ \rho_s }


where

LaTeX Math Inline
bodyj_m

Intake mass flux

LaTeX Math Inline
body\dot m

mass flowrate

LaTeX Math Inline
bodyu_s 0 = u(l=0)

Intake Fluid velocity

LaTeX Math Inline
body\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

LaTeX Math Inline
body--uriencoded--f_s 0 = f(%7B\rm Re%7D_s0, \, \epsilon)

Darcy friction factor at intake point

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D_s 0 = \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D = \frac%7B4 \rho_s 0 q_s%7D%7B0%7D%7B\pi d%7D \frac%7B1%7D%7B\mu_s%7D0%7D

Reynolds number at intake point

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

...

In most practical applications in water producing or water injecting wells, water can be considered as incompressible and friction factor  can be assumed constant

LaTeX Math Inline
body f(l) = f_s 0 = \rm const
 along-hole ( see  Darcy friction factor in water producing/injecting wells ).

...