Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole


Equations

...


LaTeX Math Block
anchorPP
alignmentleft
\bigg( 1 -  \frac{c(p) \, \rho_s^2 \, q_s^2}{A^2}   \bigg )  \frac{dp}{dl} = \rho \, g \, \frac{dz}{dl}  - \frac{\rho_s^2 \, q_s^2 }{2 A^2 d} \frac{f({\rm Re}, \, \epsilon)}{\rho}



LaTeX Math Block
anchor1
alignmentleft
q(l) = \frac{\rho_s \cdot q_0}{\rho}



LaTeX Math Block
anchor1
alignmentleft
u(l) = \frac{\rho_s \cdot q_s}{\rho \cdot A}



LaTeX Math Block
anchorp0
alignmentleft
p(l=0) = p_s



LaTeX Math Block
anchorp0
alignmentleft
q(l=0) = q_s



LaTeX Math Block
anchorp0
alignmentleft
\rho(T_s, p_s) = \rho_s


where

LaTeX Math Inline
body--uriencoded--f(%7B\rm Re%7D, \, \epsilon)

Darcy friction factor

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D = \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D = \frac%7B4 \rho_s q_s%7D%7B\pi d%7D \frac%7B1%7D%7B\mu(T, p)%7D

Reynolds number

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

...

See Derivation of Pressure Profile in Stationary Isothermal Homogenous Pipe Flow @model.


Approximations

...


Incompressible pipe flow 

LaTeX Math Inline
body\rho(T, p) = \rho_s
with constant viscosity 
LaTeX Math Inline
body\mu(T, p) = \mu_s

Pressure Profile in Incompressible Isoviscous Stationary Quasi-Isothermal Pipe Flow @model

Pressure profilePressure gradient profileFluid velocityFluid rate


LaTeX Math Block
anchorPPconst
alignmentleft
p(l) = p_s + \rho_s \, g \, z(l) - \frac{\rho_s \, q_s^2 }{2 A^2 d} \, f_s \, l



LaTeX Math Block
anchorgradP
alignmentleft
\frac{dp}{dl} = \rho_s \, g \cos \theta(l) - \frac{\rho_s \, q_s^2 }{2 A^2 d} \, f_s



LaTeX Math Block
anchor1
alignmentleft
q(l) =q_s = \rm const



LaTeX Math Block
anchor1
alignmentleft
u(l) = u_s = \frac{q_s}{A} = \rm const


where

LaTeX Math Inline
body--uriencoded--f_s = f(%7B\rm Re%7D_s, \, \epsilon)

Darcy friction factor at intake point

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D_s = \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D = \frac%7B4 \rho_s q_s%7D%7B\pi d%7D \frac%7B1%7D%7B\mu_s%7D

Reynolds number at intake point


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Incompressible fluid 

LaTeX Math Inline
body\rho(T, p) = \rho_s = \rm const
 means that compressibility vanishes 
LaTeX Math Inline
bodyc(p) = 0
 and fluid velocity is going to be constant along the pipeline trajectory 
LaTeX Math Inline
body--uriencoded--u(l) = u_s = \frac%7Bq_s%7D%7BA%7D = \rm const
.

For the constant viscosity 

LaTeX Math Inline
body\mu(T, p) = \mu_s = \rm const
 along the pipeline trajectory the Reynolds number 
LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D = \frac%7B4 \rho_s q_s%7D%7B\pi d%7D \frac%7B1%7D%7B\mu_s%7D = \rm const
 and Darcy friction factor 
LaTeX Math Inline
body--uriencoded--f(%7B\rm Re%7D, \, \epsilon) = f_s = \rm const
 are going to be constant along the pipeline trajectory.

Equation 

LaTeX Math Block Reference
anchorPP
 becomes:

LaTeX Math Block
anchorPP
alignmentleft
\frac{dp}{dl} = \rho_s \, g \, \frac{dz}{dl}  - \frac{\rho_s \, q_s^2 }{2 A^2 d} f_s

which leads to 

LaTeX Math Block Reference
anchorgradP
 after substituting 
LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta(l) = \frac%7Bdz(l)%7D%7Bdl%7D
  and can be explicitly integrated leading to 
LaTeX Math Block Reference
anchorPPconst
.


...