Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation

...

One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

...

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Inputs & Outputs

...

InputsOutputs

LaTeX Math Inline
bodyT_s

Intake temperature 

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe

LaTeX Math Inline
bodyp_s

Intake pressure 

LaTeX Math Inline
bodyq(l)

Flowrate distribution along the pipe

LaTeX Math Inline
bodyq_s

Intake flowrate 

LaTeX Math Inline
bodyu(l)

Flow velocity distribution along the pipe

LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D



LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 



LaTeX Math Inline
body\rho(T, p)



LaTeX Math Inline
body\mu(T, p)



LaTeX Math Inline
bodyA

Pipe cross-section area  

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness



Assumptions

...


Equations

...



LaTeX Math Block
anchorPP
alignmentleft
\bigg( 1 -  \frac{c(p) \, \rho_s^2 \, q_s^2}{A^2}   \bigg )  \frac{dp}{dl} = \rho \, g \, \frac{dz}{dl}  - \frac{\rho_s^2 \, q_s^2 }{2 A^2 d} \frac{f({\rm Re}, \, \epsilon)}{\rho}



LaTeX Math Block
anchor1
alignmentleft
q(l) = \frac{\rho_s \cdot q_0}{\rho}



LaTeX Math Block
anchor1
alignmentleft
u(l) = \frac{\rho_s \cdot q_s}{\rho \cdot A}



LaTeX Math Block
anchorp0
alignmentleft
p(l=0) = p_s



LaTeX Math Block
anchorp0
alignmentleft
q(l=0) = q_s



LaTeX Math Block
anchorp0
alignmentleft
\rho(T_s, p_s) = \rho_s


...

See Derivation of Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model.


Approximations

...


Incompressible pipe flow 
LaTeX Math Inline
body\rho(T, p) = \rho_s
with constant viscosity 
LaTeX Math Inline
body\mu(T, p) = \mu_s


Pressure profilePressure gradient profileFluid velocityFluid rate


LaTeX Math Block
anchorPPconst
alignmentleft
p(l) = p_s + \rho_s \, g \, z(l) - \frac{\rho_s \, q_s^2 }{2 A^2 d} \, f_s \, l



LaTeX Math Block
anchorgradP
alignmentleft
\frac{dp}{dl} = \rho_s \, g \cos \theta(l) - \frac{\rho_s \, q_s^2 }{2 A^2 d} \, f_s



LaTeX Math Block
anchor1
alignmentleft
q(l) =q_s = \rm const



LaTeX Math Block
anchor1
alignmentleft
u(l) = u_s = \frac{q_s}{A} = \rm const


...

In most practical applications in water producing or water injecting wells, water can be considered as incompressible and friction factor  can be assumed constant

LaTeX Math Inline
body f(l) = f_s = \rm const
 along-hole ( see  Darcy friction factor in water producing/injecting wells ).



References

...

Show If
grouparax


Panel
bgColorpapayawhip
titleARAX




...