Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation

...

One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

...

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

...


Outputs

...

...

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe
InputsOutputs

LaTeX Math Inline
body

T_sIntake temperature 

q(l)

Flowrate distribution along the pipe

LaTeX Math Inline
body

p

u(l)

Pressure

Flow velocity distribution along the pipe

Inputs

...

LaTeX Math Inline
bodyT_0

Intake temperature 

LaTeX Math Inline
body\rho_0

 Fluid density

LaTeX Math Inline
bodyp_

s

0

Intake pressure 

LaTeX Math Inline
body

q(l)Flowrate distribution along the pipe

\mu_0

LaTeX Math Inline
bodyq_

s

0

Intake flowrate 

LaTeX Math Inline
body

u(l)Flow velocity distribution along the pipe

A

LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss


LaTeX Math Inline
body\epsilon
 Inner pipe wall roughness
LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 



Assumptions

...

Steady-State flowIsothermal

LaTeX Math Inline
body

\rho(T, p)Fluid density 

--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial t%7D = 0

LaTeX Math Inline
body

\mu

T(

T

t,

p)

LaTeX Math Inline
bodyA

Pipe

l)=T_0 = \rm const

Homogenous flow

Constant

  

LaTeX Math Inline
body

\epsilon

Inner pipe wall roughness

Assumptions

A
along hole

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial \tau_x%7D =\frac%7B\partial p%7D%7B\partial \tau_y%7D =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

Stationary fluid flowHomogenous fluid flowIsothermal or Quasi-isothermal conditionsConstant cross-section pipe area

LaTeX Math Inline
bodyA(l) = A

along hole

= \rm const

Incompressible fluid 
Incompressible fluid  

LaTeX Math Inline
body\rho(T, p)=\rho_

s

0 = \rm const

Isoviscous  

 → 

LaTeX Math Inline
body\mu(T,

p

\rho) =\mu_

s

0 = \rm const


Equations

...

Pressure profilePressure gradient profile
Fluid velocityFluid rate
LaTeX Math Block
anchorPPconst
alignmentleft
p(l) = p_
s
0 + \rho_
s
0 \, g \, \Delta z(l) - \frac{\rho_
s
0 \, q_
s^2
0^2 }{2 A^2 d} \, f_0 \, l = p_0 + \rho_0 \, g \, \Delta z(l) - \frac{8}{\pi^2} \frac{f_
s
0 \, l}{d^5} \rho_0 \, q_0^2
LaTeX Math Block
anchorgradP
alignmentleft
\frac{dp}{dl} = \rho_
s
0 \, g \cos \theta(l) - \frac{\rho_
s
0 \, q_
s^2
0^2 }{2 A^2 d} \, f_
s
0
Mass FluxMass Flowrate

LaTeX Math Block
anchor
1
MassFlux
alignmentleft
q(l) =q_s = \rm const
j_m = \rho_0 \cdot \sqrt{\frac{2 \, d}{f_0 \, l }} \cdot \sqrt{g \, \Delta z(l) + (p_0 - p)/ \rho_0}
LaTeX Math Block
anchorMassFlowrate
alignmentleft
\dot m = j_m \cdot A = \rho_0 \cdot A \cdot \sqrt{\frac{2 \, d}{f_0 \, l }} \cdot \sqrt{g \, \Delta z(l) + (p_0 - p)/ \rho_s}

 Volumetric Flowrate

Intake Fluid velocity

LaTeX Math Block
anchor
1
PPconst
alignmentleft
u(l) = u_s = \frac{q_s}{A} = \rm const

...

q_0 = \dot m / \rho_0 = A \cdot \sqrt{\frac{2 \, d }{ f_0 \, l }} \cdot \sqrt{  g \, \Delta z(l) + (p_0 - p)/ \rho_0 }
LaTeX Math Block
anchorPPconst
alignmentleft
u_0 = j_m/ \rho_0 =q_0 / A = \sqrt{\frac{2 \, d }{ f_0 \, l }} \cdot \sqrt{  g \, \Delta z(l) + (p_0 - p)/ \rho_s }


where

LaTeX Math Inline
bodyj_m

Intake mass flux

LaTeX Math Inline
body\dot m

mass flowrate

LaTeX Math Inline
bodyu_0 = u(l=0)

Intake Fluid velocity

LaTeX Math Inline
body\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

LaTeX Math Inline
body--uriencoded--f_0 = f(%7B\rm Re%7D_0, \, \epsilon)

Darcy friction factor at intake point

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D_0 = \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D = \frac%7B4 \rho_s 0 q_s%7D%7B0%7D%7B\pi d%7D \frac%7B1%7D%7B\mu(T, p)%7D_0%7D

Reynolds number at intake point

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

...

Expand
titleDerivation
Panel
borderColorwheat
bgColormintcream
borderWidth7

Incompressible fluid 

LaTeX Math Inline
body\rho(T, p) = \rho_s 0 = \rm const
 means that compressibility vanishes 
LaTeX Math Inline
bodyc(p) = 0
 and fluid velocity is going to be constant along the pipeline trajectory 
LaTeX Math Inline
body--uriencoded--u(l) = u_s 0 = \frac%7Bq_s%7D%7BA%7D 0%7D%7BA%7D = \rm const
.

For the constant viscosity 

LaTeX Math Inline
body\mu(T, p) = \mu_s 0 = \rm const
 along the pipeline trajectory the Reynolds number 
LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D(l) = \frac%7B4 \rho_s q_s%7D%7B\pi d%7D \frac%7B1%7D%7B\mu_s%7D frac%7Bj_m%5e2 \, d%7D%7B\mu_0%7D = \rm const
 and Darcy friction factor 
LaTeX Math Inline
body--uriencoded--f(l) = f(%7B\rm Re%7D, \, \epsilon) = f_s 0 = \rm const
 are going to be constant along the pipeline trajectory.

Equation 

LaTeX Math Block Reference
anchorPP
 becomes:

LaTeX Math Block
anchorPP
alignmentleft
\frac{dp}{dl} = \rho_s0 \, g \, \frac{dz}{dl}  - \frac{\rhoj_sm^2 \, qf_s^2 0}{2 A^2\, \rho_0 \, d} f_s

which leads to 

LaTeX Math Block Reference
anchorgradP
 after substituting 
LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta(l) = \frac%7Bdz(l)%7D%7Bdl%7D
  and can be explicitly integrated leading to 
LaTeX Math Block Reference
anchorPPconst
.


The first term in the right side of 

LaTeX Math Block Reference
anchorgradP
defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In most practical applications in 
water producing or water injecting wells, water can be considered as incompressible and friction factor  can be assumed constant

LaTeX Math Inline
body f(l) = f_s 0 = \rm const
 along-hole ( see  Darcy friction factor in water producing/injecting wells ).


See also

References

...

Show If
grouparax
Panel
bgColorpapayawhip
titleARAX

...