Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation

...

One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary fluid transport.

...

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Outputs

...

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe

LaTeX Math Inline
bodyq(l)

Flowrate distribution along the pipe

LaTeX Math Inline
bodyu(l)

Flow velocity distribution along the pipe

Inputs

...

LaTeX Math Inline
bodyT_s0

Intake temperature 

LaTeX Math Inline
bodyT(l)\rho_0

 Fluid densityAlong-pipe temperature profile 

LaTeX Math Inline
bodyp_s0

Intake pressure 

LaTeX Math Inline
body\

rho(T, p)

mu_0

LaTeX Math Inline
bodyq_s0

Intake flowrate 

LaTeX Math Inline
body

\mu(T, p)
A

LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss


LaTeX Math Inline
body
A
\epsilon
 Inner pipe wall roughnessPipe cross-section area  
LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D



Assumptions

...

Steady-State flowIsothermal

LaTeX Math Inline
body

\epsilonInner pipe wall roughness

Assumptions

--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial t%7D = 0

LaTeX Math Inline
bodyT(t, l)=T_0 = \rm const

Homogenous flow

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial \tau_x%7D =\frac%7B\partial p%7D%7B\partial \tau_y%7D =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

LaTeX Math Inline
bodyA(l) = A = \rm const

Incompressible fluid 
Stationary flowHomogenous flowIsothermal or Quasi-isothermal conditionsIncompressible fluid  

LaTeX Math Inline
body\rho(T, p)=\rho_

s

0 = \rm const

Isoviscous flow  

 → 

LaTeX Math Inline
body\mu(T,

p

\rho) =\mu_

s

0 = \rm const

Constant cross-section pipe area
LaTeX Math Inline
bodyA
along hole


Equations

...

Pressure profilePressure gradient profile
Fluid velocityFluid rate
LaTeX Math Block
anchorPPconst
alignmentleft
p(l) = p_
s
0 + \rho_
s
0 \, g \, \Delta z(l) - \frac{\rho_
s
0 \, q_
s^2
0^2 }{2 A^2 d} \, f_
s
0 \, l = p_0 + \rho_0 \, g \, \Delta z(l) - \frac{8}{\pi^2} \frac{f_0 \, l}{d^5} \rho_0 \, q_0^2
LaTeX Math Block
anchorgradP
alignmentleft
\frac{dp}{dl} = \rho_
s
0 \, g \cos \theta(l) - \frac{\rho_
s
0 \, q_
s^2
0^2 }{2 A^2 d} \, f_
s
0
Mass FluxMass Flowrate

LaTeX Math Block
anchor
1
MassFlux
alignmentleft
q(l) =q_s = \rm const
j_m = \rho_0 \cdot \sqrt{\frac{2 \, d}{f_0 \, l }} \cdot \sqrt{g \, \Delta z(l) + (p_0 - p)/ \rho_0}
LaTeX Math Block
anchorMassFlowrate
alignmentleft
\dot m = j_m \cdot A = \rho_0 \cdot A \cdot \sqrt{\frac{2 \, d}{f_0 \, l }} \cdot \sqrt{g \, \Delta z(l) + (p_0 - p)/ \rho_s}

 Volumetric Flowrate

Intake Fluid velocity

LaTeX Math Block
anchor
1
PPconst
alignmentleft
u(l) = u_s = \frac{q_s}{A} = \rm const

where

q_0 = \dot m / \rho_0 = A \cdot \sqrt{\frac{2 \, d }{ f_0 \, l }} \cdot \sqrt{  g \, \Delta z(l) + (p_0 - p)/ \rho_0 }
LaTeX Math Block
anchorPPconst
alignmentleft
u_0 = j_m/ \rho_0 =q_0 / A = \sqrt{\frac{2 \, d }{ f_0 \, l }} \cdot \sqrt{  g \, \Delta z(l) + (p_0 - p)/ \rho_s }


where

LaTeX Math Inline
bodyj_m

Intake mass flux

LaTeX Math Inline
body\dot m

mass flowrate

LaTeX Math Inline
bodyu_0 = u(l=0)

Intake Fluid velocity

LaTeX Math Inline
body\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

LaTeX Math Inline
body
LaTeX Math Inline
body--uriencoded--f_0 = f(%7B\rm Re%7D_0, \, \epsilon)

Darcy friction factor at intake point

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D_0 = \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D = \frac%7B4 \rho_s 0 q_s%7D%7B0%7D%7B\pi d%7D \frac%7B1%7D%7B\mu(T, p)%7D_0%7D

Reynolds number at intake point

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

...

Expand
titleDerivation
Panel
borderColorwheat
bgColormintcream
borderWidth7

Incompressible fluid 

LaTeX Math Inline
body\rho(T, p) = \rho_s 0 = \rm const
 means that compressibility vanishes 
LaTeX Math Inline
bodyc(p) = 0
 and fluid velocity is going to be constant along the pipeline trajectory 
LaTeX Math Inline
body--uriencoded--u(l) = u_s 0 = \frac%7Bq_s%7D%7BA%7D 0%7D%7BA%7D = \rm const
.

For the constant viscosity 

LaTeX Math Inline
body\mu(T, p) = \mu_s 0 = \rm const
 along the pipeline trajectory the Reynolds number 
LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D(l) = \frac%7B4 \rho_s q_s%7D%7B\pi d%7D \frac%7B1%7D%7Bfrac%7Bj_m%5e2 \, d%7D%7B\mu_s%7D 0%7D = \rm const
 and Darcy friction factor 
LaTeX Math Inline
body--uriencoded--f(l) = f(%7B\rm Re%7D, \, \epsilon) = f_s 0 = \rm const
 are going to be constant along the pipeline trajectory.

Equation 

LaTeX Math Block Reference
anchorPP
 becomes:

LaTeX Math Block
anchorPP
alignmentleft
\frac{dp}{dl} = \rho_s0 \, g \, \frac{dz}{dl}  - \frac{\rhoj_sm^2 \, qf_s^2 0}{2 A^2 \, \rho_0 \, d} f_s

which leads to 

LaTeX Math Block Reference
anchorgradP
 after substituting 
LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta(l) = \frac%7Bdz(l)%7D%7Bdl%7D
  and can be explicitly integrated leading to 
LaTeX Math Block Reference
anchorPPconst
.


The first term in the right side of 

LaTeX Math Block Reference
anchorgradP
defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:


In most practical applications in 
water producing or water injecting wells, water can be considered as incompressible and friction factor  can be assumed constant

LaTeX Math Inline
body f(l) = f_s 0 = \rm const
 along-hole ( see  Darcy friction factor in water producing/injecting wells ).


See also

References

...

Show If
grouparax
Panel
bgColorpapayawhip
titleARAX

...