Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.


Inputs & Outputs

...

InputsOutputs

LaTeX Math Inline
bodyT_0

Intake temperature 

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe

LaTeX Math Inline
bodyp_0

Intake pressure 

LaTeX Math Inline
bodyq(l)

Flowrate distribution along the pipe

Flow velocity distribution along the pipe

LaTeX Math Inline
bodyq_0

Intake flowrate 

LaTeX Math Inline
bodyu(l)

Flow velocity distribution along the pipe

LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination (

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D
)



LaTeX Math Inline
body--uriencoded--%7B\bf r%7D(l)



LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 



LaTeX Math Inline
body\rho(T, p)



LaTeX Math Inline
body\mu(T, p)



LaTeX Math Inline
bodyA

Pipe cross-section area  

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness



Assumptions

...

...

Pressure profilePressure gradient profileFluid velocityFluid rate


LaTeX Math Block
anchorPPconst
alignmentleft
p(l) = p_0 + \rho_0 \, g \, z(l) - \frac{\rho_0 \, q_0^2 }{2 A^2 d} \, f_0 \, l



LaTeX Math Block
anchorgradP
alignmentleft
\frac{dp}{dl} = \rho_0 \, g \cos \theta(l) - \frac{\rho_0 \, q_0^2 }{2 A^2 d} \, f_0 



LaTeX Math Block
anchor1
alignmentleft
q(l) =q_0 = \rm const



LaTeX Math Block
anchor1
alignmentleft
u(l) = u_0 = \frac{q_0}{A} = \rm const


where

LaTeX Math Inline
body

\displaystyle \cos

\theta

(l) = \frac{dz

(l)

}{dl}

correction factor for

trajectory inclination


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Incompressible fluid 

LaTeX Math Inline
body\rho(p) = \rho_0 = \rm const
 means that compressibility vanishes 
LaTeX Math Inline
bodyc(p) = 0
 and fluid velocity is going to be constant along the pipeline trajectory 
LaTeX Math Inline
body--uriencoded--u(l) = u_0 = \frac%7Bq_0%7D%7BA%7D = \rm const
.

For the constant viscosity 

LaTeX Math Inline
body\mu(T, p) = \mu_0 = \rm const
 along the pipeline trajectory the Reynolds number 
LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D = \frac%7B4 \rho_0 q_0%7D%7B\pi d%7D \frac%7B1%7D%7B\mu_0%7D = \rm const
 and Darcy friction factor 
LaTeX Math Inline
body--uriencoded--f(%7B\rm Re%7D, \, \epsilon) = f_0 = \rm const
 are going to be constant along the pipeline trajectory.

Equation 

LaTeX Math Block Reference
anchorPP
 becomes:

LaTeX Math Block
anchorPP
alignmentleft
\frac{dp}{dl} = \rho_0 \, g \, \frac{dz}{dl}  - \frac{\rho_0 \, q_0^2 }{2 A^2 d} f_0

and can be explicitly integrated leading to 

LaTeX Math Block Reference
anchorPPconst
.

Substituting the   

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta(l) = \frac%7Bdz(l)%7D%7Bdl%7D



The first term in the right side of 

LaTeX Math Block Reference
anchorgradP
defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:

...