Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

For a smooth (

LaTeX Math Inline
body\epsilon = 0
) tubular pipeline Darcy friction factor 
LaTeX Math Inline
bodyf
 can be estimated from various empirical correlations


LaTeX Math Block
anchor1
alignmentleft
f = 64 \, \rm Re^{-1}



LaTeX Math Inline
body\rm Re < 2,100


Laminar fluid flow

no universal correlations due to a high flow instability

LaTeX Math Inline
body2,100 < \rm Re < 4,000

Laminar-turbulent transition fluid flow


LaTeX Math Block
anchorf_4000
alignmentleft
f = 0.32 \, \rm Re^{-0.25}



LaTeX Math Inline
body4,000 < \rm Re < 50,000


Turbulent fluid flow


LaTeX Math Block
anchor1
alignmentleft
f = 0.184 \, \rm Re^{-0.2}



LaTeX Math Inline
body\rm Re > 50,000


Strong-turbulent fluid flow

where

LaTeX Math Inline
body{\rm Re}(l) = \frac{d \, v \, \rho}{\mu}

Reynolds number

LaTeX Math Inline
bodyd(l)

Inner diameter of a pipe

LaTeX Math Inline
body\mu(l) = \mu( \, p(l), \, T(l) \,)

dynamic fluid viscosity as function

LaTeX Math Inline
body\mu(p, T)
of pressure
LaTeX Math Inline
bodyp(l)
and temperature
LaTeX Math Inline
bodyT(l)
along the pipe


For non-smooth pipelines 

LaTeX Math Inline
body\epsilon > 0
the Darcy friction factor 
LaTeX Math Inline
bodyf
  can be estimated from empirical Colebrook–White correlation which works for non-laminar flow:

...

For many practical applications the Churchill correlation provides a fair (< 2 % accuracy and improving towards laminar flow) estimation of  Darcy friction factor 

LaTeX Math Inline
bodyf
 for all pipe flow regimes:


LaTeX Math Block
anchorChirchil
alignmentleft
f = \frac{64}{\rm Re} \, \Bigg [ 1+ \frac{\big(\rm Re / 8 \big)^{12} }{ \big( \Theta_1 + \Theta_2 \big)^{1.5} }  \Bigg]^{1/12}



LaTeX Math Block
anchor1
alignmentleft
\Theta_1 = \left[  2.457 \, \ln \left(  \left( \frac{7}{\rm Re} \right)^{0.9}  + 0.27 \, \frac{\epsilon}{d}  \right)   \right]^{16}



LaTeX Math Block
anchor1
alignmentleft
\Theta_2 = \left(  \frac{37530}{\rm Re} \right)^{16}



Typical surface roughness of a factory steel pipelines is 

LaTeX Math Inline
body\epsilon
 = 0.05 mm which may increase significantly under mineral sedimentation or erosive impact of the flowing fluids.

...