Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Expand
titleDetailing


Detailing Inputs

LaTeX Math Inline
bodyB = \frac{\theta}{2\pi} \cdot A_e \cdot h _a \cdot \phi _a \cdot c_t

water influx constant

LaTeX Math Inline
body\theta

central angle of net pay area ↔ aquifer contact

LaTeX Math Inline
bodyh_a

aquifer effective thickness

LaTeX Math Inline
body\phi_a

aquifer porosity

LaTeX Math Inline
bodyc_t=c_r +c_w

aquifer total compressibility

LaTeX Math Inline
bodyc_r

aquifer pore compressibility 

LaTeX Math Inline
bodyc_w

aquifer water compressibility


...


LaTeX Math Block
anchorVEH
alignmentleft
Q^{\downarrow}_{AQ}= B \cdot \int_0^t W_{eD} \left( \frac{(t-\tau)\chi_a}{r_e^2}, \frac{r_a}{r_e}  \right) \dot p(\tau) d\tau



LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \frac{dQ^{\downarrow}_{AQ}}{dt}




LaTeX Math Block
anchorWeD
alignmentleft
W_{eD}(t, r)= \int_0^{t} \frac{\partial p_1}{\partial r_D} \bigg|_{r_D = 1} dt_D 







LaTeX Math Block
anchorRC1
alignmentleft
\frac{\partial p_1}{\partial t_D} =  \frac{\partial^2 p_1}{\partial r_D^2} + \frac{1}{r_D}\cdot \frac{\partial p_1}{\partial r_D}



LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D = 0, r_D)= 0



LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D, r_D=1) = 1




LaTeX Math Block
anchorgradp
alignmentleft
\frac{\partial p_1(t_D, r_D)}{\partial r_D} 
\Bigg|_{r_D=r_{aD}} = 0

or

LaTeX Math Block
anchorgradp
alignmentleft
 p_1(t_D, r_D = \infty) = 0


...

Expand
titleDerivation


Panel
borderColorwheat
borderWidth10


Transient flow in Radial Composite Reservoir:


LaTeX Math Block
anchorRC
alignmentleft
\frac{\partial p_a}{\partial t} = \chi \cdot \left[ \frac{\partial^2 p_a}{\partial r^2} + \frac{1}{r}\cdot \frac{\partial p_a}{\partial r} \right]



LaTeX Math Block
anchor1
alignmentleft
p_a(t = 0, r)= p(0)



LaTeX Math Block
anchor1
alignmentleft
p_a(t, r=r_e) = p(t)



LaTeX Math Block
anchorp1_PSS
alignmentleft
\frac{\partial p_a}{\partial r} 
\bigg|_{(t, r=r_a)} = 0



Consider a pressure convolution:


LaTeX Math Block
anchorVEHP
alignmentleft
p_a(t, r) = p(0) + \int_0^t p_1 \left(\frac{(t-\tau) \cdot \chi_a}{r_e^2}, \frac{r}{r_e} \right) \dot p(\tau) d\tau



LaTeX Math Block
anchor1
alignmentleft
\dot p(\tau) = \frac{d p}{d \tau}



One can easily check that

LaTeX Math Block Reference
anchorVEHP
honors the whole set of equations
LaTeX Math Block Reference
anchorRC
LaTeX Math Block Reference
anchorp1_PSS
and as such defines a unique solution of the above problem.

Water flowrate within

LaTeX Math Inline
body\theta
sector angle at interface with oil reservoir will be:

LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h_a \cdot u(t,r_e)

where

LaTeX Math Inline
bodyu(t,r_e)
is flow velocity at aquifer contact boundary, which is:

LaTeX Math Block
anchor1
alignmentleft
u(t,r_e) = M_a \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}
 

where

LaTeX Math Inline
bodyM _a = \frac{k_a}{\mu_w}
is aquifer mobility.

Water flowrate becomes:

LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h_a \cdot M_a \cdot  \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}


Cumulative water flux:

LaTeX Math Block
anchorQaq1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \int_0^t q^{\downarrow}_{AQ}(t) dt = \theta \cdot r_e \cdot h_a \cdot M_a  \cdot \int_0^t \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e} dt


Substituting

LaTeX Math Block Reference
anchorVEHP
into
LaTeX Math Block Reference
anchorQaq1
leads to:

LaTeX Math Block
anchorQaq1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot r_e \cdot h_a \cdot M_a  \cdot \int_0^t d\xi \  \frac{\partial }{\partial r} \left[  

\int_0^\xi p_1 \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, \frac{r}{r_e} \right) \, \dot p(\tau) d\tau

\right]_{r=r_e}  


LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a  \cdot \int_0^t d\xi \  \frac{\partial }{\partial r_D} \left[  

\int_0^\xi p_1 \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \, \dot p(\tau) d\tau

\right]_{r_D=1}   


LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a  \cdot \int_0^t d\xi \   

\int_0^\xi \frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \Bigg|_{r_D=1} \, \dot p(\tau) d\tau

   

The above integral represents the integration over the

LaTeX Math Inline
bodyD
area in
LaTeX Math Inline
body(\tau, \ \xi)
plane (see Fig. 1):

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a  \cdot \iint_D d\xi \ d\tau  \, \dot p(\tau) 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 

   


Fig. 1. Illustration of the integration

LaTeX Math Inline
bodyD
area in
LaTeX Math Inline
body(\tau, \ \xi)
plane



Changing the integration order from

LaTeX Math Inline
body\tau \rightarrow \xi
to
LaTeX Math Inline
body\xi \rightarrow \tau
leads to:

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a  \cdot \int_0^t d\tau \int_\tau^t d\xi  \ \dot p(\tau) 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 
= 
 \theta  \cdot h_a \cdot M_a  \cdot \int_0^t \dot p(\tau) d\tau \int_\tau^t d\xi  \ 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 

Replacing the variable:

LaTeX Math Block
anchor1
alignmentleft
\xi = \tau + \frac{r_e^2}{\chi_a} \cdot t_D \rightarrow t_D = \frac{(\xi-\tau)\chi_a}{r_e^2} \rightarrow d\xi = \frac{r_e^2}{\chi_a} \cdot dt_D

and flux becomes:

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a \cdot \frac{r_e^2}{\chi_a} \cdot \int_0^t \dot p(\tau) d\tau \int_0^{(t-\tau)\chi_a/r_e^2}  

\frac{\partial p_1( t_D, r_D)}{\partial r_D}  \Bigg|_{r_D=1} dt_D = B \cdot \int_0^t \dot p(\tau) d\tau \int_0^{(t-\tau)\chi_a/r_e^2}  

\frac{\partial p_1( t_D, r_D)}{\partial r_D}  \Bigg|_{r_D=1} dt_D

where

LaTeX Math Inline
bodyB
is water influx constant and which leads to
LaTeX Math Block Reference
anchorVEH
and
LaTeX Math Block Reference
anchorWeD
.


...


LaTeX Math Block
anchorVEHD
alignmentleft
Q^{\downarrow}_{AQ}(t)= B \cdot \sum_\alpha W_{eD} 
\left( \frac{ (t-\tau_\alpha) \chi_a}{r_e^2}, \frac{r_a}{r_e}  \right)\Delta p_\alpha 


= B \cdot W_{eD} 
\left( \frac{ (t-\tau_1) \chi_a}{r_e^2}, \frac{r_a}{r_e}  \right)\Delta p_1 +
 B \cdot W_{eD} 
\left( \frac{ (t-\tau_2) \chi_a}{r_e^2}, \frac{r_a}{r_e}  \right)\Delta p_2
+ ... + B \cdot W_{eD} 
\left( \frac{ (t-\tau_N) \chi_a}{r_e^2}, \frac{r_a}{r_e}  \right)\Delta p_N


This computational scheme is model is using a discrete convolution (also called superposition in time domain.some publications) with time-grid 

LaTeX Math Inline
body\{ \tau_1, \, \tau_2, \ ... \ , \tau_N \}
.

In practical exercises with manual or spreadsheet-assisted calculations the time-grid is usually uniform: 

LaTeX Math Inline
body\{ \tau_1 =\Delta \tau, \, \tau_2 = 2 \cdot \Delta \tau, \ ... \ , \tau_N = N \cdot \Delta \tau\}
 with the time step 
LaTeX Math Inline
body\Delta \tau
 of a month to ensure the formation pressure does In practical exercises with manual or spreadsheet-assisted calculations the time step is usually a month to ensure the formation pressure did not change much since the previous time step.

...

The benefit of VEH approach is that net pay formation pressure history 

LaTeX Math Inline
bodyp(t)
is usually known and the aquifer drive model parameters so that water influx calculation based on aquifer properties 
LaTeX Math Inline
body\{ B, \, r_a \}
 is rather straightforward.


In Material Balance calculations the aquifer model is used to 


can be calibrated iteratively by using 

LaTeX Math Block Reference
anchorVEHD
 in Material Balance calculations .


See Also

...

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models

...