Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Motivation



Excerpt Include
Aquifer Drive
Aquifer Drive
nopaneltrue


Inputs & Outputs



InputsOutputs

LaTeX Math Inline
bodyp(t)

field-average formation pressure at time moment

LaTeX Math Inline
bodyt

LaTeX Math Inline
bodyQ^{\downarrow}_{AQ}(t)

Cumulative subsurface water influx from aquifer

LaTeX Math Inline
bodyp_i

initial formation pressure

LaTeX Math Inline
bodyq^{\downarrow}_{AQ}(t) = \frac{dQ^{\downarrow}_{AQ}}{dt}

Subsurface water flowrate from aquifer

LaTeX Math Inline
bodyB

water influx constant





LaTeX Math Inline
body\chi

aquifer diffusivity

LaTeX Math Inline
bodyA_e

net pay area


Expand
titleDetailing


Detailing Inputs

LaTeX Math Inline
bodyB = \frac{\theta}{2\pi} \cdot A_e \cdot h_a \cdot \phi_a \cdot c_t

water influx constant

LaTeX Math Inline
body\theta

central angle of net pay area ↔ aquifer contact

LaTeX Math Inline
bodyh_a

aquifer effective thickness

LaTeX Math Inline
body\phi_a

aquifer porosity

LaTeX Math Inline
bodyc_t=c_r +c_w

aquifer total compressibility

LaTeX Math Inline
bodyc_r

aquifer pore compressibility 

LaTeX Math Inline
bodyc_w

aquifer water compressibility



Physical Model



Radial Composite Reservoir

Transient flow









Fig. 1.VEHaquifer drive schematic



Mathematical Model



LaTeX Math Block
anchorVEH
alignmentleft
Q^{\downarrow}_{AQ}= B \cdot \int_0^t W_{eD} \left( \frac{(t-\tau)\chi_a}{r_e^2}  \right) \dot p(\tau) d\tau



LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \frac{dQ^{\downarrow}_{AQ}}{dt}




LaTeX Math Block
anchorWeD
alignmentleft
W_{eD}(t)= \int_0^{t} \frac{\partial p_1}{\partial r_D} \bigg|_{r_D = 1} dt_D 







LaTeX Math Block
anchorRC1
alignmentleft
\frac{\partial p_1}{\partial t_D} =  \frac{\partial^2 p_1}{\partial r_D^2} + \frac{1}{r_D}\cdot \frac{\partial p_1}{\partial r_D}



LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D = 0, r_D)= 0



LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D, r_D=1) = 1




LaTeX Math Block
anchor1
alignmentleft
\frac{\partial p_1}{\partial r_D} 
\bigg|_{(t_D, r_D=r_a/r_e)} = 0




Expand
titleDerivation


Panel
bgColorCornsilk


Transient flow in Radial Composite Reservoir:


LaTeX Math Block
anchorRC
alignmentleft
\frac{\partial p_a}{\partial t} = \chi \cdot \left[ \frac{\partial^2 p_a}{\partial r^2} + \frac{1}{r}\cdot \frac{\partial p_a}{\partial r} \right]



LaTeX Math Block
anchor1
alignmentleft
p_a(t = 0, r)= p(0)



LaTeX Math Block
anchor1
alignmentleft
p_a(t, r=r_e) = p(t)



LaTeX Math Block
anchorp1_PSS
alignmentleft
\frac{\partial p_a}{\partial r} 
\bigg|_{(t, r=r_a)} = 0



Consider a pressure convolution:


LaTeX Math Block
anchorVEHP
alignmentleft
p_a(t, r) = p(0) + \int_0^t p_1 \left(\frac{(t-\tau) \cdot \chi_a}{r_e^2}, \frac{r}{r_e} \right) \dot p(\tau) d\tau



LaTeX Math Block
anchor1
alignmentleft
\dot p(\tau) = \frac{d p}{d \tau}



One can easily check that

LaTeX Math Block Reference
anchorVEHP
honors the whole set of equations
LaTeX Math Block Reference
anchorRC
LaTeX Math Block Reference
anchorp1_PSS
and as such defines a unique solution of the above problem.

Water flowrate within

LaTeX Math Inline
body\theta
sector angle at interface with oil reservoir will be:

LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h_a \cdot u(t,r_e)

where

LaTeX Math Inline
bodyu(t,r_e)
is flow velocity at aquifer contact boundary, which is:

LaTeX Math Block
anchor1
alignmentleft
u(t,r_e) = M_a \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}
 

where

LaTeX Math Inline
bodyM_a = \frac{k_a}{\mu_w}
is aquifer mobility.

Water flowrate becomes:

LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h_a \cdot M_a \cdot  \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}


Cumulative water flux:

LaTeX Math Block
anchorQaq1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \int_0^t q^{\downarrow}_{AQ}(t) dt = \theta \cdot r_e \cdot h_a \cdot M_a  \cdot \int_0^t \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e} dt


Substituting

LaTeX Math Block Reference
anchorVEHP
into
LaTeX Math Block Reference
anchorQaq1
leads to:

LaTeX Math Block
anchorQaq1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot r_e \cdot h_a \cdot M_a  \cdot \int_0^t d\xi \  \frac{\partial }{\partial r} \left[  

\int_0^\xi p_1 \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, \frac{r}{r_e} \right) \, \dot p(\tau) d\tau

\right]_{r=r_e}  


LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a  \cdot \int_0^t d\xi \  \frac{\partial }{\partial r_D} \left[  

\int_0^\xi p_1 \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \, \dot p(\tau) d\tau

\right]_{r_D=1}   


LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a  \cdot \int_0^t d\xi \   

\int_0^\xi \frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \Bigg|_{r_D=1} \, \dot p(\tau) d\tau

   

The above integral represents the integration over the

LaTeX Math Inline
bodyD
area in
LaTeX Math Inline
body(\tau, \ \xi)
plane (see Fig. 1):

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a  \cdot \iint_D d\xi \ d\tau  \, \dot p(\tau) 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 

   



Fig. 1. Illustration of the integration

LaTeX Math Inline
bodyD
area in
LaTeX Math Inline
body(\tau, \ \xi)
plane



Changing the integration order from

LaTeX Math Inline
body\tau \rightarrow \xi
to
LaTeX Math Inline
body\xi \rightarrow \tau
leads to:

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a  \cdot \int_0^t d\tau \int_\tau^t d\xi  \ \dot p(\tau) 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 
= 
 \theta  \cdot h_a \cdot M_a  \cdot \int_0^t \dot p(\tau) d\tau \int_\tau^t d\xi  \ 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi_a}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 

Replacing the variable:

LaTeX Math Block
anchor1
alignmentleft
\xi = \tau + \frac{r_e^2}{\chi_a} \cdot t_D \rightarrow t_D = \frac{(\xi-\tau)\chi_a}{r_e^2} \rightarrow d\xi = \frac{r_e^2}{\chi_a} \cdot dt_D

and flux becomes:

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a \cdot \frac{r_e^2}{\chi_a} \cdot \int_0^t \dot p(\tau) d\tau \int_0^{(t-\tau)\chi_a/r_e^2}  

\frac{\partial p_1( t_D, r_D)}{\partial r_D}  \Bigg|_{r_D=1} dt_D

and finally:

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h_a \cdot M_a \cdot \frac{r_e^2}{\chi_a} \cdot \int_0^t \dot p(\tau) d\tau \int_0^{(t-\tau)\chi_a/r_e^2}  

\frac{\partial p_1( t_D, r_D)}{\partial r_D}  \Bigg|_{r_D=1} dt_D

which leads to

LaTeX Math Block Reference
anchorVEH
and
LaTeX Math Block Reference
anchorWeD
.





See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models


Reference


 1. van Everdingen, A.F. and Hurst, W. 1949. The Application of the Laplace Transformation to Flow Problems in Reservoirs. Trans., AIME 186, 305.

2. Tarek Ahmed, Paul McKinney, Advanced Reservoir Engineering (eBook ISBN: 9780080498836)

3. Klins, M.A., Bouchard, A.J., and Cable, C.L. 1988. A Polynomial Approach to the van Everdingen-Hurst Dimensionless Variables for Water Encroachment. SPE Res Eng 3 (1): 320-326. SPE-15433-PA. http://dx.doi.org/10.2118/15433-PA