Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation

...

One of the key challenges in Pipe Flow Dynamics is to predict the along-hole the pressure distribution along the pipe during the stationary steady-state fluid transport.The 

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

...

Outputs

...

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe
InputsOutputsPipeline trajectory

LaTeX Math Inline
body

{\bf r} = {\bf r}(l) = \{ x

q(l)

, \, y(l), \, z(l) \}along-pipe  stabilized pressure distribution 

Flowrate distribution along the pipe

LaTeX Math Inline
body

p

u(l)

Pipe cross-section area 

Flow velocity distribution along the pipe

Inputs

...

LaTeX Math Inline
body

Aalong-pipe stabilized flowrate distribution 

T_0

Fluid temperature at inlet point (

LaTeX Math Inline
body

q(

l=0
)

Along-pipe temperature profile 

LaTeX Math Inline
bodyT(l)

along

Along-pipe

stabiliszed average flow velocity distribution Fluid density

 temperature profile 

LaTeX Math Inline
body

u(l)

p_0

Fluid pressure at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body\rho(T, p)

Fluid density 

LaTeX Math Inline
bodyq_0

Fluid flowrate  at inlet point (

LaTeX Math Inline
body

\rho

l=0
)

LaTeX Math Inline
body\mu(T, p)

and

LaTeX Math Inline
body

\mu(T, p)Intake pressure 

z(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  
LaTeX Math Inline
body
p_0Intake rate 
\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
body

q_0

\epsilon

Inner pipe wall roughness

Assumptions

...

Assumptions

--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial t%7D = 0

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial T%7D%7B\partial t%7D =0 \rightarrow T(t,l) = T(l)

Homogenous flow

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial \tau_x%7D =\frac%7B\partial p%7D%7B\partial \tau_y%7D =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

LaTeX Math Inline
bodyA(l) = A = \rm const


Equations

...

LaTeX Math Block
anchor
9QRCZ
PP
alignmentleft
\
bigg
left( 
1
\rho(p) -  j_m^2 \
frac{
cdot c(p) 
\,
 
\rho_0^2
 \
, q_0^2}{A^2} \bigg )
right) \cdot  \frac{dp}{dl} = \
rho
rho^2(p) \, g \, \cos \
frac{dz}{dl}
theta(l)  - \frac{
\rho_0^2 \, q_0^2
 j_m^2 }{2
A^2
 d} \
frac{
cdot  f(p)
}{\rho(p)}
LaTeX Math Block
anchorp0
alignmentleft
p(l=0) = p_0




LaTeX Math Block
anchor1
alignmentleft
u(l) = \frac{
\rho_0 \cdot q_0
j_m}{\rho(
p) \cdot A(
l)}
LaTeX Math Block
anchor1
alignmentleft
q(l) =
\frac{
A \cdot u(l)

where

LaTeX Math Inline
body--uriencoded--\displaystyle j_m =\frac%7B \rho_0

\cdot q_0}{\rho(p)}

(see Derivation of Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model )

Approximations

Incompressible pipe flow with constant friction

\, q_0%7D%7BA%7D= \rm const

mass flux

LaTeX Math Inline
bodyq_0 = q(l=0)

Fluid flowrate at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body\rho_0 = \rho(T_0, p_0)

Fluid density at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body\rho(l) = \rho(T(l), p(l))

Fluid density at any point 

LaTeX Math Inline
bodyl

LaTeX Math Inline
body--uriencoded--\displaystyle с(p) = \frac%7B1%7D%7B\rho%7D \left( \frac%7B\partial \rho%7D%7B\partial p%7D \right)_T

Fluid Compressibility

LaTeX Math Inline
body--uriencoded--f(T, \rho) = f(%7B\rm Re%7D(T, \rho), \, \epsilon)

Darcy friction factor

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D(T,\rho) = \frac%7Bj_m \cdot d%7D%7B\mu(T, \rho)%7D

Reynolds number in Pipe Flow

LaTeX Math Inline
body\mu(T,\rho)

dynamic viscosity as function of fluid temperature 

LaTeX Math Inline
bodyT
 and density 
LaTeX Math Inline
body\rho

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D= \rm const

Characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)




Expand
titleDerivation
Panel
borderColorwheat
bgColormintcream
borderWidth7

See Derivation of Pressure Profile in Steady-State Homogeneous Pipe Flow @model.

Alternative forms

...

LaTeX Math Block
anchorPP
alignmentleft
  
Pressure profilePressure gradient profileFluid velocityFluid rate
LaTeX Math Block
anchorH8MPT
alignmentleft
p(l) = p_0 + \rho \, g \, z(l) - \frac{\rho_0 \, q_0^2 }{2 A^2 d} \, f_0 \, l
LaTeX Math Block
anchorIFPGP
alignmentleft
\frac{dp}{dl} = \
rho \, g \cos \theta(l) -
left(   \frac{dp}{dl} \right)_G +  \left(   \frac{
\rho_0 \, q_0^2 }{2 A^2 d} \, f_0
LaTeX Math Block
anchor1
alignmentleft
u(l) = \frac{q_0}{A(l)}
LaTeX Math Block
anchor1
alignmentleft
q(l) =q_0 = \rm const

where

...

LaTeX Math Inline
body\displaystyle \cos \theta(l) = \frac{dz(l)}{dl}

...

correction factor for trajectory deviation

dp}{dl} \right)_K  +  \left(   \frac{dp}{dl} \right)_f

where

LaTeX Math Inline
body--uriencoded--\displaystyle \left( \frac%7Bdp%7D%7Bdl%7D \right)_G = \rho \cdot g \cdot \cos \theta


gravity losses which represent  pressure losses for upward flow and pressure gain for downward flow

LaTeX Math Inline
body--uriencoded--\displaystyle \left( \frac%7Bdp%7D%7Bdl%7D \right)_K = u%5e2 \cdot \frac%7Bd \rho%7D%7Bdl%7D


kinematic losses, which grow contribution at high velocities 

LaTeX Math Inline
bodyu = j_m / \rho
 and high fluid compressibility (like turbulent gas flow)

LaTeX Math Inline
body--uriencoded--\displaystyle \left( \frac%7Bdp%7D%7Bdl%7D \right)_f = - \frac%7B j_m%5e2%7D%7B2 d%7D \cdot \frac%7Bf%7D%7B\rho%7D


friction losses which are always negative along the flow direction


Approximations


Pressure Profile in G-Proxy Pipe Flow @modelquadrature

LaTeX Math Inline
body\theta(l) = \theta_0 = \rm const

Pressure Profile in GF-Proxy Pipe Flow @modelquadrature

LaTeX Math Inline
body\theta(l) = \theta_0 = \rm const
LaTeX Math Inline
bodyf(T, p)=f_0 = \rm const

LaTeX Math Inline
body\theta(l) = \theta_0 = \rm const
LaTeX Math Inline
bodyf(T, p)=f_0 = \rm const

LaTeX Math Inline
body--uriencoded--\rho(T, p) = \rho(T) \cdot (1+ c%5e*(T) \cdot p/p_0)
Pressure Profile in Incompressible Quasi-Isothermal Proxy Pipe Flow @modelquadrature

LaTeX Math Inline
body\rho(p)=\rho_0 = \rm const
LaTeX Math Inline
bodyT(t, l)=T(l)

Pressure Profile in Incompressible Isothermal Proxy Pipe Flow @modelclosed-form expression

LaTeX Math Inline
body\rho(p)=\rho_0 = \rm const
LaTeX Math Inline
bodyT=T_0 = \rm const
 (isothermal)

Pressure Profile in GC-proxy static fluid column @modelclosed-form expression

LaTeX Math Inline
body\theta(l) = \theta_0 = \rm const
LaTeX Math Inline
body\dot m = 0
 (no flow)

The first term in 

LaTeX Math Block Reference
anchorIFPGP
defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:

...

LaTeX Math Inline
body f(l) = f_s = \rm const

...


See also

...

Show If
grouparax
Panel
bgColorpapayawhip
titleARAX

...