Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation

...

One of the key problems in designing the pipelines and wells and controlling the fluid transport along is to predict the pressure along-hole pressure distribution during the stationary fluid transportchallenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the steady-state fluid transport.

In many practical cases the flow stationary pressure distribution can be considered as approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline flow simulator Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

...

Outputs

...

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe
InputsOutputsPipeline trajectory

LaTeX Math Inline
body

{\bf r} = {\bf r}

q(l)

= \{ x(l), \, y(l), \, z(l) \}

Flowrate distribution along the pipe

LaTeX Math Inline
bodyu(l)

Flow velocity distribution along the pipe

Inputs

...

LaTeX Math Inline
bodyT_0

Fluid temperature at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 

along-pipe distribution of stabilised pressure 

LaTeX Math Inline
bodyp_0

Fluid pressure at inlet point (

LaTeX Math Inline
bodyl

)Pipeline cross-section area 

=0
)

LaTeX Math Inline
body

A(l)along-pipe distribution of stabilised flow rate 

\rho(T, p)

Fluid density 

LaTeX Math Inline
bodyq_0

Fluid flowrate  at inlet point (

LaTeX Math Inline
bodyl=0
)

Fluid density

LaTeX Math Inline
body\

rho

mu(T, p)

and

LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  
LaTeX Math Inline
body\
mu
theta (
T, p)along-pipe distribution of stabilised average flow velocity 
l)


Pipeline trajectory inclination,

LaTeX Math Inline
body

u

--uriencoded--\displaystyle \cos \theta (l)

= \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
body\epsilon

 

Inner pipe wall roughness

Assumptions

...

Steady-State flowQuasi-isothermal flow

LaTeX Math Inline
body

\epsilon

Assumptions

--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial t%7D = 0

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial T%7D%7B\partial t%7D =0 \rightarrow T(t,l) = T(l)

Homogenous flow
Stationary fluid flowHomogenous fluid flowIsothermal or Quasi-isothermal conditions

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial \tau_x%7D =\frac%7B\partial p%7D%7B\partial \tau_y%7D =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

along hole

LaTeX Math Inline
bodyA(l) = A = \rm const


Equations

...

LaTeX Math Block
anchor
9QRCZ
PP
alignmentleft
\
bigg
left( 
1
\rho(p) -  j_m^2 \
frac{
cdot c(p) 
\,
 
\rho_0^2
 \
, q_0^2}{A^2}
right) \
bigg
cdot 
)
 
\frac{dp}{dl} = \
rho
rho^2(p) \, g \, \cos \
frac{dz}{dl}
theta(l)  - \frac{
\rho_0^2 \, q_0^2
 j_m^2 }{2
A^2
 d} \
frac{f(p)}{\rho
cdot  f(p)
}
LaTeX Math Block
anchor
1
p0
alignmentleft
u
p(l=0) = 
\frac{\rho_0 \cdot q_0}{\rho(p) \cdot A(l)}

Approximations

Incompressible fluid with constant friction

Pressure profilePressure gradient profile
p_0




LaTeX Math Block
anchor
H8MPT
1
alignmentleft
p
u(l) =
p_0 + \rho \, g \, z(l)
 
-
\frac{
\rho_0 \, q_0^2 }{2 A^2 d} \, f_0 \, l
j_m}{\rho(l)}
LaTeX Math Block
anchor
IFPGP
1
alignmentleft
\frac{dp}{dl}
q(l) =A \
rho \, g \cos \theta
cdot u(l)
- \frac{

where

LaTeX Math Inline
body--uriencoded--\displaystyle j_m =\frac%7B \rho_0

\,

q_

0^2 }{2 A^2 d} \, f_0

...

0%7D%7BA%7D= \rm const

mass flux

LaTeX Math Inline
body

\displaystyle \cos \theta

q_0 = q(l

) = \frac{dz(l)}{dl}

correction factor for trajectory deviation

The first term in 

LaTeX Math Block Reference
anchorIFPGP
defines the hydrostatic column of static fluid while the last term defines the friction losses under fluid movement:

...

userama@naftacollege.com
groupsofoil

Профиль давления

...

=0)

Fluid flowrate at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body

...

\rho_0 = \rho(T_0, p_0)

Fluid density at inlet point (

LaTeX Math Inline
body

...

l=0
)

...

LaTeX Math Inline
body

...

\rho(l)

...

условию баланса массы движущегося потока:

LaTeX Math Block
anchorMatBal2
alignmentleft
 A(l) \, \rho(l) \, v(l) = \rm const

и баланса сил действующих на единицу объема флюида в стволе скважины:

LaTeX Math Block
anchorgradP
alignmentleft
\frac{dp}{dl} = \rho \, g \, \sin \theta - \rho \, v \, \frac{dv}{dl} - \frac{ f \, \rho \, v^2 \, }{2 d}

где

...

LaTeX Math Inline
bodyl

...

Image Removed

...

LaTeX Math Inline
body\rho(l)
 

...

LaTeX Math Inline
body \theta(l)

...

LaTeX Math Inline
bodyd(l)

...

LaTeX Math Inline
bodyA(l)

...

профиль поперечного сечения ствола скважины

LaTeX Math Inline
bodyA(l) = 0.25 \, \pi \, d^2(l)

...

LaTeX Math Inline
bodyf(l)

...

LaTeX Math Inline
bodyg

...

Эти замкнутая система уравнений для стационарного распределения давления и скорости потока вдоль трубы.

Для несжимаемой жидкости

LaTeX Math Inline
body\rho = \rm const
в отсутствии трения
LaTeX Math Inline
body f = 0
уравнение
LaTeX Math Block Reference
anchorgradP
принимает вид:

...

anchorgradP
alignmentleft

= \rho(T(l), p(l))

Fluid density at any point 

LaTeX Math Inline
bodyl

LaTeX Math Inline
body--uriencoded--\displaystyle с(p) = \frac%7B1%7D%7B\rho%7D \left( \frac%7B\partial \rho%7D%7B\partial p%7D \right)_T

Fluid Compressibility

LaTeX Math Inline
body--uriencoded--f(T, \rho) = f(%7B\rm Re%7D(T, \rho), \, \epsilon)

Darcy friction factor

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D(T,\rho) = \frac%7Bj_m \cdot d%7D%7B\mu(T, \rho)%7D

Reynolds number in Pipe Flow

LaTeX Math Inline
body\mu(T,\rho)

dynamic viscosity as function of fluid temperature 

LaTeX Math Inline
bodyT
 and density 
LaTeX Math Inline
body\rho

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D= \rm const

Characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)




Expand
titleDerivation
Panel
borderColorwheat
bgColormintcream
borderWidth7

See Derivation of Pressure Profile in Steady-State Homogeneous Pipe Flow @model.

Alternative forms

...

LaTeX Math Block
anchorPP
alignmentleft
  \frac{dp}{dl} = \

...

left( 

...

 

...

 \

...

frac{dp}{dl} \

...

и может быть явно проинтегрировано:

...

anchorgradP
alignmentleft

...

right)_G +  \left(   \frac{dp}{dl} \right)_K  +  \left(   \frac{

...

dp}{

...

dl} \

...

right)_f

where

и называется уравнением Бернулли.

...

LaTeX Math Inline
bodyq_s

...

LaTeX Math Inline
body

...

LaTeX Math Block Reference
anchorMatBal2

...

--uriencoded--\displaystyle \left( \frac%7Bdp%7D%7Bdl%7D \right)_G = \rho \cdot g \cdot \cos \theta


gravity losses which represent  pressure losses for upward flow and pressure gain for downward flow

LaTeX Math Inline
body--uriencoded--\displaystyle \left( \frac%7Bdp%7D%7Bdl%7D \right)_K = u%5e2 \cdot \frac%7Bd \rho%7D%7Bdl%7D


kinematic losses, which grow contribution at high velocities 

LaTeX Math Inline
bodyu = j_m / \rho
 and high fluid compressibility (like turbulent gas flow)

LaTeX Math Inline
body--uriencoded--\displaystyle \left( \frac%7Bdp%7D%7Bdl%7D \right)_f = - \frac%7B j_m%5e2%7D%7B2 d%7D \cdot \frac%7Bf%7D%7B\rho%7D


friction losses which are always negative along the flow direction


Approximations


Pressure Profile in G-Proxy Pipe Flow @modelquadrature

LaTeX Math Inline
body\theta(l) = \theta_0 = \rm const

Pressure Profile in GF-Proxy Pipe Flow @modelquadrature

LaTeX Math Inline
body\theta(l) = \theta_0 = \rm const
LaTeX Math Inline
bodyf(T, p)=f_0 = \rm const

LaTeX Math Inline
body\theta(l) = \theta_0 = \rm const
LaTeX Math Inline
bodyf(T, p)=f_0 = \rm const

LaTeX Math Inline
body--uriencoded--\rho(T, p) = \rho(T) \cdot (1+ c%5e*(T) \cdot p/p_0)
Pressure Profile in Incompressible Quasi-Isothermal Proxy Pipe Flow @modelquadrature

LaTeX Math Inline
body\rho(p)=\rho_0 = \rm const
LaTeX Math Inline
bodyT(t, l)=T(l)

Pressure Profile in Incompressible Isothermal Proxy Pipe Flow @modelclosed-form expression
LaTeX Math Block
anchorArhov
alignmentleft
A \, \rho \, v = \rho_s \, q_s

откуда можно выразить явно профиль скорости потока по стволу:

LaTeX Math Block
anchorv
alignmentleft
v(l) = \frac{\rho_s \, q_s}{\rho(p) \, A(l)}

Подставляя 

LaTeX Math Block Reference
anchorv
  в  
LaTeX Math Block Reference
anchorgradP
 получим уравнение на профиль давления вдоль ствола:

LaTeX Math Block
anchor6JNN1
alignmentleft
\frac{dp}{dl} = \rho \, g \, \sin \theta - \frac{\rho_s^2 \, q_s^2}{A}  \frac{d}{dl} \bigg( \frac{1}{A \, \rho} \bigg) - \frac{\rho_s^2 \, q_s^2 }{2 A^2 d} \frac{f}{\rho}

Далее учтем, что угол наклона к горизонту

LaTeX Math Inline
body\theta
может быть выражен через абсолютные отметки глубин  
LaTeX Math Inline
bodyz(l)
  вдоль траектории скважины 
LaTeX Math Inline
bodyl(x,y,z)
:

LaTeX Math Block
anchor1
alignmentleft
\sin \theta = \frac{dz}{dl}

и уравнение для давление примет вид:

LaTeX Math Block
anchor6JNN1
alignmentleft
\frac{dp}{dl} = \rho \, g \, \frac{dz}{dl} -  \frac{\rho_s^2 \, q_s^2}{A}  \frac{d}{dl} \bigg( \frac{1}{A \, \rho} \bigg) - \frac{\rho_s^2 \, q_s^2 }{2 A^2 d} \frac{f}{\rho}

Диаметр труб, вдоль которых идет движение воды, остается постоянным на долгом протяжении и меняется редко (например, километр НКТ и потов выход потока в колонну), и это позволяет решать задачу нахождения профиля давления на кусках постоянного диаметра 

LaTeX Math Inline
bodyd = {\rm const}, \quad A = {\rm const}
 и уравнение может быть переписано следующим образом:

LaTeX Math Block
anchordp_implicit
alignmentleft
\frac{dp}{dl} = \rho \, g \, \frac{dz}{dl} - \frac{\rho_s^2 \, q_s^2}{A^2}  \frac{d}{dl} \bigg( \frac{1}{\rho} \bigg) - \frac{\rho_s^2 \, q_s^2 }{2 A^2 d} \frac{f}{\rho}

Процесс движения воды вдоль трубы происходит в состоянии термодинамического равновесия и плотность воды является функцией только давления

LaTeX Math Inline
body\rho = \rho(p)
и, следовательно:

LaTeX Math Block
anchor1
alignmentleft
\frac{d}{dl} \bigg( \frac{1}{\rho} \bigg) = -\frac{1}{\rho^2} \frac{d \rho}{ dl} 
= - \frac{1}{\rho^2}\frac{d \rho}{dp} \frac{dp}{ dl}
=- \frac{c}{\rho} \frac{dp}{ dl}

где

LaTeX Math Inline
bodyc(p)= \frac{1}{\rho} \frac{d \rho}{dp}
– сжимаемость воды и уравнение профиля давления принимает вид:

LaTeX Math Block
anchordp_explicit
alignmentleft
\bigg( 1 -  \frac{c(p) \, \rho_s^2 \, q_s^2}{A^2}   \bigg )  \frac{dp}{dl} = \rho(p) \, g \, \frac{dz}{dl}  - \frac{\rho_s^2 \, q_s^2 }{2 A^2 d} \frac{f(p)}{\rho(p)}

...

LaTeX Math Inline
bodyz(l)

...

LaTeX Math Inline
bodyc(p)

...

LaTeX Math Inline
body\rho(p)

...

LaTeX Math Inline
bodyf(p)

...

LaTeX Math Block Reference
anchordp_explicit

...

=\rho_0 = \rm const
LaTeX Math Inline
bodyT=T_0 = \rm const
 (isothermal)

Pressure Profile in GC-proxy static fluid column @modelclosed-form expression

LaTeX Math Inline
body

...

\theta(l)

...

= \theta_0 = \rm const
LaTeX Math Inline
body

...

\dot m = 0
 (no flow)


See also

...

Show If
grouparax
Panel
bgColorpapayawhip
titleARAX