Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation

...

One of the key challenges in Pipe Flow Dynamics is to predict the pressure distribution along the pipe during the stationary steady-state fluid transport.

In many practical cases the stationary pressure distribution can be approximated by Isothermal or Quasi-isothermal homogenous fluid flow model.

Pipeline Flow Pressure Model is addressing this problem with account of the varying pipeline trajectory, gravity effects and fluid friction with pipeline walls.

Outputs

...

LaTeX Math Inline
bodyp(l)

Pressure distribution along the pipe

LaTeX Math Inline
bodyq(l)

Flowrate distribution along the pipe

LaTeX Math Inline
bodyu(l)

Flow velocity distribution along the pipe

Inputs

...

LaTeX Math Inline
bodyT_

sIntake temperature 

0

Fluid temperature at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 

LaTeX Math Inline
bodyp_

sIntake pressure 

0

Fluid pressure at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body\rho(T, p)

Fluid density 

LaTeX Math Inline
bodyq_

s

0

Intake 

Fluid flowrate  at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body\mu(T, p)

Fluid

LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  
LaTeX Math Inline
body\theta (l)


Pipeline trajectory inclination,

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness

Assumptions

...

Stationary flowHomogenous
Steady-State flow
Isothermal or
Quasi-isothermal
conditions
 flow

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial t%7D = 0

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial T%7D%7B\partial t%7D =0 \rightarrow T(t,l) = T(l)

Homogenous flow

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial \tau_x%7D =\frac%7B\partial p%7D%7B\partial \tau_y%7D =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

LaTeX Math Inline
bodyA(l) = A = \rm const


Equations

...

LaTeX Math Block
anchorPP
alignmentleft
\left( 1\rho(p) -  \frac{\rho_s^2 \, q_s^2}{A^2} \cdot \frac{j_m^2 \cdot c(p)}{\rho}   \right) \cdot  \frac{dp}{dl} = \rhorho^2(p) \, g \, \frac{dz}{dl}cos \theta(l)  - \frac{\rho_s^2 \, q_s^2 j_m^2 }{2 A^2 d} \frac{f({\rm Re}, \, \epsilon)}{\rho}cdot  f(p)
LaTeX Math Block
anchor1p0
alignmentleft
qp(l=0) = \frac{\rho_s \cdot q_s}{\rho}p_0




LaTeX Math Block
anchor1
alignmentleft
u(l) = \frac{\rho_s \cdot q_sj_m}{\rho \cdot A(l)}
LaTeX Math Block
anchorp01
alignmentleft
pq(l=0) = p_s
LaTeX Math Block
anchorp0
alignmentleft
A \cdot u(l)

where

LaTeX Math Inline
body--uriencoded--\displaystyle j_m =\frac%7B \rho_0 \, q_0%7D%7BA%7D= \rm const

mass flux

LaTeX Math Inline
bodyq_0 = q(l=0)

= q_s LaTeX Math Block
anchorp0
alignmentleft

Fluid flowrate at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body\rho_0 = \rho(T_

s

0,

p_

s) = \rho_s

...

0)

Fluid density at inlet point (

LaTeX Math Inline
bodyl=0
)

LaTeX Math Inline
body\rho(l) = \rho(T(l), p(l))

Fluid density at any point 

LaTeX Math Inline
bodyl

LaTeX Math Inline
body--uriencoded--\displaystyle с(p) = \frac%7B1%7D%7B\rho%7D \left( \frac%7B\partial \rho%7D%7B\partial p%7D \right)_T

Fluid Compressibility

LaTeX Math Inline
body--uriencoded--f(T, \rho) = f(%7B\rm Re%7D(T, \rho), \, \epsilon)

Darcy friction factor

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D

= \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D = \frac%7B4 \rho_s q_s%7D%7B\pi d%7D \frac%7B1%7D%7B\

(T,\rho) = \frac%7Bj_m \cdot d%7D%7B\mu(T,

p

\rho)%7D

Reynolds number in Pipe Flow

LaTeX Math Inline
body\mu(T,\rho)

dynamic viscosity as function of fluid temperature 

LaTeX Math Inline
bodyT
 and density 
LaTeX Math Inline
body\rho

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D= \rm const

characteristic

Characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

See Derivation of Pressure Profile in Stationary Isothermal Homogenous Pipe Flow @model.

...

LaTeX Math Inline
body\rho(T, p) = \rho_s

...

LaTeX Math Inline
body\mu(T, p) = \mu_s




Expand
titleDerivation
Panel
borderColorwheat
bgColormintcream
borderWidth7

See Derivation of Pressure Profile in Steady-State Homogeneous Pipe Flow @model.

Alternative forms

...

LaTeX Math Block
anchorPP
alignmentleft
  \frac{dp}{dl} = \left(   \frac{dp}{dl} \right)_G +  \left(   

Pressure Profile in Incompressible Isoviscous Stationary Quasi-Isothermal Pipe Flow @model

Pressure profilePressure gradient profileFluid velocityFluid rate
LaTeX Math Block
anchorPPconst
alignmentleft
p(l) = p_s + \rho_s \, g \, z(l) - \frac{\rho_s \, q_s^2 }{2 A^2 d} \, f_s \, l
LaTeX Math Block
anchorgradP
alignmentleft
\frac{dp}{dl}
=
 \
rho
right)_
s
K 
\,
 
g
+ 
\cos
 \
theta
left(
l)
  
-
 \frac{
\rho_s \, q_s^2 }{2 A^2 d
dp}{dl} \
, f_s
LaTeX Math Block
anchor1
alignmentleft
q(l) =q_s = \rm const
LaTeX Math Block
anchor1
alignmentleft
u(l) = u_s = \frac{q_s}{A} = \rm const

where

right)_f

where

LaTeX Math Inline
body--uriencoded--\displaystyle \left( \frac%7Bdp%7D%7Bdl%7D \right)_G = \rho \cdot g \cdot \cos \theta


gravity losses which represent  pressure losses for upward flow and pressure gain for downward flow

LaTeX Math Inline
body--uriencoded--\displaystyle \left( \frac%7Bdp%7D%7Bdl%7D \right)_K = u%5e2 \cdot \frac%7Bd \rho%7D%7Bdl%7D


kinematic losses, which grow contribution at high velocities 

LaTeX Math Inline
bodyu = j_m / \rho
 and high fluid compressibility (like turbulent gas flow)

LaTeX Math Inline
body--uriencoded--f_s = f(%7B\rm Re%7D_s, \, \epsilon)

Darcy friction factor at intake point

LaTeX Math Inline
body--uriencoded--\displaystyle

%7B\rm Re%7D_s = \frac%7Bu(l) \cdot d%7D%7B\nu(l)%7D = \frac%7B4 \rho_s q_s%7D%7B\pi d%7D \frac%7B1%7D%7B\mu_s%7DReynolds number at intake point

...

titleDerivation

...

borderColorwheat
bgColormintcream
borderWidth7

...

\left( \frac%7Bdp%7D%7Bdl%7D \right)_f = - \frac%7B j_m%5e2%7D%7B2 d%7D \cdot \frac%7Bf%7D%7B\rho%7D


friction losses which are always negative along the flow direction


Approximations


...

LaTeX Math Inline
body\

...

theta(

...

l) = \

...

theta_

...

0 = \rm const

...

LaTeX Math Inline
body

...

f(T, p)=f_0

...

...

\theta(l)

...

= \

...

theta_

...

0 = \rm const

...

LaTeX Math Inline
body

...

f(T, p)=

...

f_

...

0 = \rm const

...

LaTeX Math Inline
body--uriencoded--\

...

...

LaTeX Math Inline
body

...

\rho(p)=\rho_0 = \rm const

...

Equation 

LaTeX Math Block Reference
anchorPP
 becomes:

LaTeX Math Block
anchorPP
alignmentleft
\frac{dp}{dl} = \rho_s \, g \, \frac{dz}{dl}  - \frac{\rho_s \, q_s^2 }{2 A^2 d} f_s

which leads to 

LaTeX Math Block Reference
anchorgradP
 after substituting 
LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta(l) = \frac%7Bdz(l)%7D%7Bdl%7D
  and can be explicitly integrated leading to 
LaTeX Math Block Reference
anchorPPconst
.

...

LaTeX Math Block Reference
anchorgradP

...

LaTeX Math Inline
bodyT(t, l)=T(l)

Pressure Profile in Incompressible Isothermal Proxy Pipe Flow @modelclosed-form expression

LaTeX Math Inline
body\rho(p)=\rho_0 = \rm const
LaTeX Math Inline
bodyT=T_0 = \rm const
 (isothermal)

Pressure Profile in GC-proxy static fluid column @modelclosed-form expression

LaTeX Math Inline
body\theta(l) = \theta_0 = \rm const
LaTeX Math Inline
body\dot m = 0
 (no flow)

...

LaTeX Math Inline
body f(l) = f_s = \rm const

...


See also

...