Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

@wikipedia


Dimensionless quantity characterising the ratio of thermal convection to thermal conduction in fluids across (normal to) the boundary with solids:

LaTeX Math Block
anchor1
alignmentleft
{\rm Nu} = \frac{\rm Convective \ heat  \ transfer}{\rm Conductive \ heat \ 
 transfer} = \frac{U}{\lambda / L} =\frac{U \cdot L}{\lambda } 

where 

LaTeX Math Inline
bodyU
 is the convective heat transfer coefficient of the flow, 
LaTeX Math Inline
bodyL
 is the characteristic length
LaTeX Math Inline
body\lambda
 is the thermal conductivity of the fluid.


Stagnant Fluid



For 
 Stagnant Fluid the Nusselt number is a constant number (OEIS sequence A282581):

LaTeX Math Block
anchorNu0
alignmentleft
{\rm Nu}=3.6568


Natural Convection


In Natural Fluid Convection becomes dependant on Rayleigh number 

LaTeX Math Inline
body\rm Ra
 and Prandtl number 
LaTeX Math Inline
body\rm Pr
LaTeX Math Inline
body--uriencoded--\mbox%7BNu%7D = f (\mbox%7BRa%7D, \mbox%7BPr%7D)
:


LaTeX Math Block
anchor4VZDP
alignmentleft
\mbox{Nu}_D= \left[ 0.825 + \frac{0.387 \, \mbox{Ra}_D^{1/6}}{ \left[ 1+ (0.492/\mbox{Pr})^{9/16} \right]^{8/27}} \right]^2



Churchill and Chu 



All convection regimes in pipelines

LaTeX Math Inline
body--uriencoded--\mbox%7BRa%7D_D \leq 10%5e%7B12%7D


LaTeX Math Block
anchor4VZDP
alignmentleft
\mbox{Nu}_L= 0.68 + \frac{0.663 \, \mbox{Ra}^{1/4}}{ \left[ 1+ (0.492/\mbox{Pr})^{9/16} \right]^{4/9}}



Churchill and Chu



Laminar convection

LaTeX Math Inline
body--uriencoded--\mbox%7BRa%7D \leq 10%5e9


In case of natural convection in the annulus the Nusselt number becomes also dependant on the annulus geometry:


LaTeX Math Block
anchor1
alignmentleft
{\rm Nu}_{ann} = \frac{2 \cdot \epsilon({\rm Ra})}{\ln (r_{out}/r_{in})}


where

LaTeX Math Inline
body--uriencoded--\epsilon(%7B\rm Ra%7D)

Natural Convection Heat Transfer Multiplier

LaTeX Math Inline
body\rm Ra

Rayleigh number 

LaTeX Math Inline
body--uriencoded--r_%7Bout%7D

inner radius of outer pipe

LaTeX Math Inline
body--uriencoded--r_%7Bin%7D

outer radius of inner pipe


Forced Convection



In Forced Fluid Convection the 
Nusselt number becomes dependant on Reynolds number 

LaTeX Math Inline
body\rm Re
 and Prandtl number 
LaTeX Math Inline
body\rm Pr
LaTeX Math Inline
body--uriencoded--\mbox%7BNu%7D = f (\mbox%7BRe%7D, \mbox%7BPr%7D)
.



LaTeX Math Block
anchor5CZ08
alignmentleft
{\rm Nu}=3.66 + \frac{ 0.065 \cdot {\rm Re} \cdot {\rm Pr} \cdot {D/L} }{ 1 + 0.04 \cdot ({\rm Re} \cdot {\rm Pr} \cdot {D/L})^{2/3} }



Mills



Laminar flow in pipeline with diameter 

LaTeX Math Inline
bodyD
 and length 
LaTeX Math Inline
bodyL
.


LaTeX Math Block
anchorNu
alignmentleft
{\rm Nu}=0.023 \cdot \mbox{Re}_D^{3/4} \cdot \mbox{Pr}^{0.4}



Dittus-Boelter



Turbulent flow  in pipeline 

LaTeX Math Inline
body--uriencoded--\mbox%7BRe%7D \geq 10,000



LaTeX Math Block
anchorNu
alignmentleft
{\rm Nu}=\frac{ (f/8) \, ({\rm Re} - 1000) {\rm Pr}  }{ 1 + 12.7 \, (f/8)^{1/2} \, ({\rm Pr}^{2/3} -1) }



Gnielinski


LaTeX Math Inline
body--uriencoded--%7B\displaystyle 3000\leq \mathrm %7BRe%7D\leq 5\cdot 10%5e%7B6%7D%7D

LaTeX Math Inline
body--uriencoded--0.5\leq \mathrm %7BPr%7D \leq 2000
 

LaTeX Math Inline
bodyf
 is Darcy friction factor


LaTeX Math Block
anchorNu
alignmentleft
{\rm Nu}=0.3 + \frac{0.62 \, \mbox{Re}^{1/2} \, \mbox{Pr}^{1/3} }
{\left[ 1+ (0.4/\mbox{Pr})^{2/3} \right]^{1/4}}
\left[ 1 + \left( \frac{\mbox{Re}}{282000} \right)^{5/8}\right]^{4/5}


All flow regimes in pipelines

LaTeX Math Inline
body--uriencoded--\mbox %7BRe%7D \cdot \mbox %7BPr%7D \geq 0.2

Accuracy 

LaTeX Math Inline
body--uriencoded--\sim 20 \%25


Relation to Biot Number  


Both numbers naturally arise in modelling the heat exchange between solid body and fluid.

Both numbers have similar definition except that Nusselt number is based on  thermal conductivity of the fluid while Biot Number is based on  thermal conductivity of the solid body.

Normally Nusselt number indicates whether conductive or convective heat transfer dominates across the interface between solid body and fluid.

While Biot Number indicates whether significant thermal gradient will develop inside a solid body based on the ratio of heat transfer away from the surface of a solid body to heat transfer within the solid body.


See also


Physics / Thermodynamics / Heat Transfer

Heat Transfer Coefficient (HTC) ] Heat Transfer Coefficient @model ]

Dimensionless Heat Transfer Numbers ]

[ Prandtl number ] [ Rayleigh number ] Reynolds number ] [ Biot Number ]

References





Show If
grouparax


Panel
bgColorpapayawhip
titleARAX

Heat Transfer in Flow Through Conduits.pdf