@wikipedia


Dimensionless quantity characterising the ratio of thermal convection to thermal conduction in fluids across (normal to) the boundary with solids:

{\rm Nu} = \frac{\rm Convective \ heat  \ transfer}{\rm Conductive \ heat \ 
 transfer} = \frac{U}{\lambda / L} =\frac{U \cdot L}{\lambda } 

where  is the convective heat transfer coefficient of the flow,  is the characteristic length is the thermal conductivity of the fluid.


Stagnant Fluid



For 
 Stagnant Fluid the Nusselt number is a constant number (OEIS sequence A282581):

{\rm Nu}=3.6568


Natural Convection


In Natural Fluid Convection becomes dependant on Rayleigh number  and Prandtl number :


\mbox{Nu}_D= \left[ 0.825 + \frac{0.387 \, \mbox{Ra}_D^{1/6}}{ \left[ 1+ (0.492/\mbox{Pr})^{9/16} \right]^{8/27}} \right]^2



Churchill and Chu 

Churchill, S.W. and Chu, H.H.S. (1975) Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate. International Journal of Heat and Mass Transfer, 18, 1323-1329.
http://dx.doi.org/10.1016/0017-9310(75)90243-4



\mbox{Nu}_L= 0.68 + \frac{0.663 \, \mbox{Ra}^{1/4}}{ \left[ 1+ (0.492/\mbox{Pr})^{9/16} \right]^{4/9}}



Churchill and Chu

Churchill, S.W. and Chu, H.H.S. (1975) Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate. International Journal of Heat and Mass Transfer, 18, 1323-1329.
http://dx.doi.org/10.1016/0017-9310(75)90243-4



In case of natural convection in the annulus the Nusselt number becomes also dependant on the annulus geometry:


{\rm Nu}_{ann} = \frac{2 \cdot \epsilon({\rm Ra})}{\ln (r_{out}/r_{in})}


where

Natural Convection Heat Transfer Multiplier

Rayleigh number 

inner radius of outer pipe

outer radius of inner pipe


Forced Convection



In Forced Fluid Convection the 
Nusselt number becomes dependant on Reynolds number  and Prandtl number .



{\rm Nu}=3.66 + \frac{ 0.065 \cdot {\rm Re} \cdot {\rm Pr} \cdot {D/L} }{ 1 + 0.04 \cdot ({\rm Re} \cdot {\rm Pr} \cdot {D/L})^{2/3} }



Mills

A.F. Mills, Heat Transfer, Second Edition, Prentice-Hall, New Jersey, 1999.



Laminar flow in pipeline with diameter  and length .


{\rm Nu}=0.023 \cdot \mbox{Re}_D^{3/4} \cdot \mbox{Pr}^{0.4}



Dittus-Boelter

Dittus-Boelter




{\rm Nu}=\frac{ (f/8) \, ({\rm Re} - 1000) {\rm Pr}  }{ 1 + 12.7 \, (f/8)^{1/2} \, ({\rm Pr}^{2/3} -1) }



Gnielinski

Gnielinski, Volker (1975). "Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen". Forsch. Ing.-Wes. 41 (1): 8–16.


 

 is Darcy friction factor


{\rm Nu}=0.3 + \frac{0.62 \, \mbox{Re}^{1/2} \, \mbox{Pr}^{1/3} }
{\left[ 1+ (0.4/\mbox{Pr})^{2/3} \right]^{1/4}}
\left[ 1 + \left( \frac{\mbox{Re}}{282000} \right)^{5/8}\right]^{4/5}



Churchill–Bernstein 

Churchill, S. W.; Bernstein, M. (1977), "A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow", Journal of Heat Transfer, 99 (2): 300–306, Bibcode:1977ATJHT..99..300C, doi:10.1115/1.3450685


All flow regimes in pipelines

Accuracy 


Relation to Biot Number  


Both numbers naturally arise in modelling the heat exchange between solid body and fluid.

Both numbers have similar definition except that Nusselt number is based on  thermal conductivity of the fluid while Biot Number is based on  thermal conductivity of the solid body.

Normally Nusselt number indicates whether conductive or convective heat transfer dominates across the interface between solid body and fluid.

While Biot Number indicates whether significant thermal gradient will develop inside a solid body based on the ratio of heat transfer away from the surface of a solid body to heat transfer within the solid body.


See also


Physics / Thermodynamics / Heat Transfer

Heat Transfer Coefficient (HTC) ] Heat Transfer Coefficient @model ]

Dimensionless Heat Transfer Numbers ]

[ Prandtl number ] [ Rayleigh number ] Reynolds number ] [ Biot Number ]

References






Heat Transfer in Flow Through Conduits.pdf