Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

@wikipedia


Volume occupied by one mole of a substance (chemical element or chemical compound) at a given pressure 

LaTeX Math Inline
bodyp
 and temperature 
LaTeX Math Inline
bodyT
:

LaTeX Math Block
anchor1
alignmentleft
V_m(p, T) = \frac{V}{\nu} =\frac{M}{\rho}= \frac{1}{\rho_m} = \frac{N_A}{n}

where

LaTeX Math Inline
bodyV

volume

LaTeX Math Inline
bodyM

molar mass of a substance

LaTeX Math Inline
bodyn

Molecular Concentration

LaTeX Math Inline
body\nu

amount of substance

LaTeX Math Inline
body\rho

density of a substance

LaTeX Math Inline
bodyN_A

Avogadro constant (6.022140758(62) · 1023  mol−1 )


Molar volume
 

LaTeX Math Inline
bodyV_m
 is directly related to the average intermolecular distance 
LaTeX Math Inline
bodyV_m
 and in case of isotropic substance
LaTeX Math Inline
body--uriencoded--V_m = N_A \cdot d%5e3
.


Molar volume 

LaTeX Math Inline
bodyV_m
 is inverse to Molar Density 
LaTeX Math Inline
body\rho_m

LaTeX Math Block
anchorZFTII
alignmentleft
V_m = \frac{1}{\rho_m}


In case of 
fluid which satisfies Real Gas EOS @model the Molar volume 

LaTeX Math Inline
bodyV_m
 can be expressed in terms of Z-factor 
LaTeX Math Inline
bodyZ(p, T)
:

LaTeX Math Block
anchor4R31X
alignmentleft
V_m = \frac{ZRT}{p}

where

LaTeX Math Inline
bodyT

temperature

LaTeX Math Inline
bodyp

pressure

LaTeX Math Inline
bodyR

gas constant


Molar volume
of the mixture is:

LaTeX Math Block
anchor4YJAU
alignmentleft
V_m(p, T) =\frac{M}{\rho_f} = \frac{\sum_k M_k \cdot x_k}{\rho_f} 
where

LaTeX Math Inline
bodyM_k

molar mass of the k-th mixture component

LaTeX Math Inline
bodyx_k

mole fraction of the k-th mixture component

LaTeX Math Inline
body\rho_f

mixture density