Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Excerpt

The dual-water model accounts for the fact that different shales have different shale-bound water saturation 

LaTeX Math Inline
bodys_{wb}= \frac{V_{wb}}{V_t}
:

LaTeX Math Block
alignmentleft
\phi_t = \phi_e  + \phi_t s_{wb} 

so that formation water saturation 

LaTeX Math Inline
bodys_w
 is related to total water saturation 
LaTeX Math Inline
bodys_{wt} = \frac{V_{wb} + V_w}{V_t }
 as:

LaTeX Math Block
alignmentleft
s_w = \frac{s_{wt} - s_{wb}}{ 1 - s_{wb}}





Expand
titleExpand for math

Rock volume

LaTeX Math Inline
bodyV
is a sum of rock matrix volume
LaTeX Math Inline
bodyV_m
and total pore volume
LaTeX Math Inline
bodyV_t
:

LaTeX Math Block
alignmentleft
V = V_m + V_t = (1-\phi_t) V + \phi_t V

where

LaTeX Math Block
alignmentleft
\phi_t = \frac{V_t}{V}


Total pore volume 

LaTeX Math Inline
bodyV_t
 is a sum of shale-bound water 
LaTeX Math Inline
bodyV_{wb}
and free fluid volume 
LaTeX Math Inline
bodyV_e
(water and hydrocarbons):

LaTeX Math Block
alignmentleft
V_t = \phi_t V = V_e + V_{wb} = \phi_e V + s_{wb} V_t

where

LaTeX Math Block
alignmentleft
V_e = V_t  (1 - s_{wb})

and therefore:

LaTeX Math Block
alignmentleft
\phi_e = \phi_t  (1 - s_{wb})


Total volume of water is a sum of shale-bound water 

LaTeX Math Inline
bodyV_{wb}
 and free water 
LaTeX Math Inline
bodyV_{wf}
:

LaTeX Math Block
alignmentleft
V_{wt} = V_{wb} + V_{wf}

and relates to 

LaTeX Math Inline
bodyV_t
 as:

LaTeX Math Block
alignmentleft
s_{wt} V_t = s_{wb} V_t + s_w V_e = s_{wb} V_t + s_w V_t  (1 - s_{wb})

or

LaTeX Math Block
alignmentleft
s_{wt} = s_{wb} + s_w (1 - s_{wb})

which gives an explicit formula for formation water saturation:

LaTeX Math Block
alignmentleft
s_w = \frac{s_{wt} - s_{wb}}{ 1 - s_{wb}}







Formation resistivity 

LaTeX Math Inline
bodyR_t
 is given by the following correlation:

LaTeX Math Block
alignmentleft
\frac{1}{R_t} = \phi_t^m s_{wt}^n \, \Big[ \frac{1}{R_w} + \frac{s_{wb}}{s_{wt}} \Big( \frac{1}{R_{wb}} - \frac{1}{R_w} \Big)  \Big] \quad \Rightarrow \quad s_w = \frac{s_{wt} - s_{wb}}{ 1 - s_{wb}}

where

LaTeX Math Inline
bodys_{wb} = \frac{V_{wb}}{V_t}

shale-bound water saturation

LaTeX Math Inline
bodys_{wt} = \frac{V_{wb} + V_w}{V_t}

total water saturation (shal-bound water and free-water)

LaTeX Math Inline
bodyR_{wb}

specific electrical resisitvity of shale-bound water


In simple case when all shales have the same properties, the shale-bound water saturation can be expressed through the shaliness as:

LaTeX Math Block
anchor1
alignmentleft
s_{wb} = \zeta_{wb} V_{sh}





LaTeX Math Inline
bodys_w

formation water saturation

LaTeX Math Inline
bodys_{wb}

bound water saturation


LaTeX Math Inline
body\phi_e

effective porosity

LaTeX Math Inline
bodyV_{sh}

shaliness

LaTeX Math Inline
bodyR_t

total measured resistivity from OH logs

LaTeX Math Inline
bodyR_w

formation water resistivity

LaTeX Math Inline
bodyR_{sh}

wet clay resistivity

LaTeX Math Inline
bodyA


dimensionless constant, characterising the rock matrix contribution to the total electrical resistivity

0.5 ÷ 1, default value is 1 for sandstones and 0.9 for limestones

LaTeX Math Inline
bodym

formation matrix cementation exponent1.5 ÷ 2.5, default value is 2

LaTeX Math Inline
bodyn

formation matrix water-saturation exponent

1.5 ÷ 2.5, default value is 2



In some practical cases, the clay resisitvity

LaTeX Math Inline
bodyR_{sh}
can be expressed as:

LaTeX Math Block
anchor4
alignmentleft
\frac{1}{R_{sh}} = B \cdot Q_V

where

LaTeX Math Inline
bodyB

conductance per cat-ion (mho · cm2/meq)

LaTeX Math Inline
bodyQ_V

Cation Exchange Capacity (meq/ml)

and both can be measured in laboratory.


The other model parameters still need calibration on core data.

...