Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


(see SPT survey)


When flow rate is being intentionally varied in harmonic cycles with sandface amplitude 

LaTeX Math Inline
bodyq_0
 and cycling frequency 
LaTeX Math Inline
body\omega = \frac{2 \, \pi}{T}
:

LaTeX Math Block
anchorq
alignmentleft
q(t) = q_0 \, \sin ( \omega  \, t )

then bottom-hole pressure will follow the same variation pattern:

LaTeX Math Block
anchorXC0L5
alignmentleft
p_{wf}(t) = p_0 \, \sin ( \omega \, [ t - t_{\Delta} ] )

with a bottom-hole pressure amplitude 

LaTeX Math Inline
bodyp_0
 and the time delay 
LaTeX Math Inline
bodyt_{\Delta}

It takes some time (3-5 cycles 

LaTeX Math Inline
bodyt \geq 3 \, T
) for pressure to develop a stabilized response to rate variations.


The pressure delay  

LaTeX Math Inline
bodyt_{\Delta}
 and associated dimensionless phase shift 
LaTeX Math Inline
body\Delta = \omega \, t_{\Delta}
 represent the inertia effects from the adjoined reservoir and characterized by formation pressure diffusivity:

LaTeX Math Block
anchor1
alignmentleft
\chi = \Big <  \frac{k}{\mu}    \Big > \frac{1}{\phi \, c_t}


The diffusion nature of pressure dictates that amplitude of pressure variation is proportional to amplitude of sandface flowerate variation and the ratio 

LaTeX Math Inline
body\frac{p_0}{q_0}
 is related to formation transmissibility:

LaTeX Math Block
anchorLBMDD
alignmentleft
\sigma = \Big <  \frac{k}{\mu}    \Big > \,  h


The exact solution of differential diffusion equation for vertical well with negligible well storage and infinite boundary homogeneous reservoir can be represented by a system of non-linear algebraic equations, relating field-measured parameters 

LaTeX Math Inline
body\big\{ \frac{q_0}{p_0}, \, t_{\Delta} \big\}
 to formation properties 
LaTeX Math Inline
body\{ \sigma, \, \chi \}
:

LaTeX Math Block
anchordefX
alignmentleft
X =r_w \, \sqrt{ \frac{\omega}{\chi} }


LaTeX Math Block
anchordefDelta
alignmentleft
\Delta = \omega \, t_{\Delta} = \frac{\pi}{4} - arctg{ \frac{Ker_1 X \cdot Kei \, X - Ker_1 X \cdot Kei \, X }{Ker_1 X \cdot Kei \, X +Ker_1 X \cdot Kei \, X } } 


LaTeX Math Block
anchordefSigma
alignmentleft
\sigma =\frac{1}{2 \pi} \, \frac{q_0}{p_0} \, \sqrt{ \frac{Ker^2 X + Kei^2 X}{Ker_1^2 X + Kei_1^2 X} }

The above equations assume that diffusivity 

LaTeX Math Inline
body\chi
 and dimensionless radius 
LaTeX Math Inline
bodyX
 are found from 
LaTeX Math Block Reference
anchordefX
 – 
LaTeX Math Block Reference
anchordefDelta
 and then 
LaTeX Math Inline
bodyX
 is substituted to 
LaTeX Math Block Reference
anchordefSigma
 to calculate transmissibility 
LaTeX Math Inline
body\sigma
.


In case of a low frequency pulsations:

LaTeX Math Block
anchor1
alignmentleft
\omega \ll 0.00225 \, \frac{ \chi }{ r_w^2} \quad \Longleftrightarrow \quad X \ll 0.15

the equations 

LaTeX Math Block Reference
anchordefX
 – 
LaTeX Math Block Reference
anchordefSigma
 can be explicitly resolved in terms of transmissibility and diffusivity:


LaTeX Math Block
anchorchi
alignmentleft
\chi = 0.25 \, \omega \, \gamma^2 \, r_w^2 \, \exp \frac{\pi}{2 \, {\rm tg} \Delta }


LaTeX Math Block
anchorsgm
alignmentleft
\sigma = \frac{q_0}{8 \, p_0 \, \sin \Delta}

where 

LaTeX Math Inline
body\Delta = \omega \, t_{\Delta}
.


The above analytical approach (either 

LaTeX Math Block Reference
anchordefX
 – 
LaTeX Math Block Reference
anchordefSigma
 or  
LaTeX Math Block Reference
anchorchi
 – 
LaTeX Math Block Reference
anchorsgm
) is rarely helpful in practise. 

The field operations are very finnicky and difficult to follow the pre-desgined sequence of clean harmonic pulsations.

As result, the flowrate variation becomes a complex sum of harmonics:

LaTeX Math Block
anchorOCQC5
alignmentleft
q(t) = q_0 + \sum_{n=0}^\infty q_n \, \sin ( \omega_n  \, t )

and the pressure response becomes complex as well: 

LaTeX Math Block
anchorN7E3K
alignmentleft
p_{wf}(t) = p_0 + \sum_{n=0}^\infty p_n \, \sin ( \omega_n \, [ t - t_{\Delta_n} ] )
 

The use of analytical formulas requires fourier transformation to identify the key harmonics from the raw data with a manual control from analyst and a certain amount of subjectivism on which harmonics to pick up for calculating the transmissibility and diffusivity.
 

Once the harmonics are identified one need to search for the

LaTeX Math Inline
body\{ \sigma, \, \chi \}
best fit to a complex system of non-linear algebraic equations:

LaTeX Math Block
anchordefX
alignmentleft
X_n =r_w \, \sqrt{ \frac{\omega_n}{\chi} }


LaTeX Math Block
anchordefDelta
alignmentleft
\Delta_n = \omega_n \, t_{\Delta} = \frac{\pi}{4} - arctg{ \frac{Ker_1 X_n \cdot Kei \, X_n - Ker_1 X_n \cdot Kei \, X_n }{Ker_1 X_n \cdot Kei \, X_n +Ker_1 X_n \cdot Kei \, X_n } } 


LaTeX Math Block
anchordefSigma
alignmentleft
\sigma =\frac{1}{2 \pi} \, \frac{q_n}{p_n} \, \sqrt{ \frac{Ker^2 X_n + Kei^2 X_n}{Ker_1^2 X_n + Kei_1^2 X_n} }



In practice, the most efficient methodology to interpret the SPT data is via fitting numerical model to the raw pressure-rate data.

Still, formulas 

LaTeX Math Block Reference
anchorchi
and
LaTeX Math Block Reference
anchorsgm
 play important academic role and provide fast track estimations in SPT engineering.