Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Block
anchordivT
alignmentleft
(\rho \,c_p)_m \frac{\partial T}{\partial t} 
 
- \bigg( \sum_\alpha \rho_\alpha \ c_{p \alpha} \ \eta_{s \alpha}\bigg) \ \frac{\partial P_\alphap}{\partial t}  
 
+ \bigg( \sum_\alpha \rho_\alpha \ c_{p \alpha} \ u_\alpha \bigg) \frac{\partial T}{\partial l}
 \  =   \   \frac{1}{A}  \ \sum_\alpha \rho_\alpha \ c_{p \alpha} T_\alpha \frac{\partial  q_\alpha}{\partial l} 

...

rhom(l)  cross-sectional average fluid densityin-situ cross-sectional area A(l) = 0.25 \, \pi \, d^2(l)\nukinematic viscosity Tltemperature flowing from reservoir into a wellbore

LaTeX Math Inline
bodym

indicates a mixture of fluid phases

LaTeX Math Inline
body(t,x,y,z)

time and space corrdinates ,

LaTeX Math Inline
body z
-axis is orientated towards the Earth centre,

LaTeX Math Inline
body(x,y)
define transversal plane to the
LaTeX Math Inline
body z
-axis

LaTeX Math Inline
body\alpha = \{w,o,g \}

water, oil, gas phase indicator

LaTeX Math Inline
bodyl\mathbf{r} = (x, \ y, \ z)

position vector at which the flow equations are set


LaTeX Math Inline
bodyl (x, \ y, \ z)

measured depth along wellbore trajectory

LaTeX Math Inline
bodydl^2 = dx^2 + dy^2 + dz^2
starting from tubing head
LaTeX Math Inline
bodyl (x = x_0, \ y=y_0, \ z = z_{THP}) = 0


LaTeX Math Inline
bodyq_\alpha(t, l) = \frac{d V_\alpha}{dt}

volumetric flow rate

LaTeX Math Inline
body\alpha
-phase fluid at wellbore depth
LaTeX Math Inline
bodyl

LaTeX Math Inline
bodyu_\alpha(l)

in-situ velocity of

LaTeX Math Inline
body\alpha
-phase fluid flow

LaTeX Math Inline
bodyg = 9.81 \ \rm m/s^2

gravitational acceleration constant

LaTeX Math Inline
body\rho_\alpha(p, T)

LaTeX Math Inline
body\alpha
-phase fluid density at pressure
LaTeX Math Inline
bodyp
and temperature
LaTeX Math Inline
bodyT



LaTeX Math Inline
body\rho_m(l)
 

cross-sectional average fluid density



LaTeX Math Inline
body \theta(l)

wellbore trajectory inclination to horizon



LaTeX Math Inline
bodyd(l)

cross-sectional average pipe flow diameter



LaTeX Math Inline
bodyA(l)

in-situ cross-sectional area

LaTeX Math Inline
bodyA(l) = 0.25 \, \pi \, d^2(l)




LaTeX Math Inline
bodyf_m(u_m)

Darci flow friction coefficient at fluid velocity

LaTeX Math Inline
bodyu_m

LaTeX Math Inline
body\lambda_t(p,T,s_w, s_o, s_g)

effective thermal conductivity of the rocks with account for multiphase fluid saturationmeasure length along wellbore trajectory

LaTeX Math Inline
bodyu\nu_\alpha(lp,T)

in-situ velocity kinematic viscosity of

LaTeX Math Inline
body\alpha
-phase fluid flow

LaTeX Math Inline
body\lambda_r(P,T)

rock matrix thermal conductivity

LaTeX Math Inline
bodyTrho_\alpha(l)

temperature of

LaTeX Math Inline
body\alpha
-phase fluid densityflowing from reservoir into a wellbore

LaTeX Math Inline
body\

lambda_

\alpha(P,T)

thermal conductivity of

LaTeX Math Inline
body\alpha
-phase fluid

LaTeX Math Inline
body\theta(l)mu_\alpha(p,T)

wellbore trajectory inclination to horizon

dynamic viscosity of

LaTeX Math Inline
bodyd(l)

cross-sectional average pipe flow diameter

\alpha
-phase fluid

LaTeX Math Inline
body

A(l)

\rho_r(P,T)

rock matrix mass density



LaTeX Math Inline
body

\eta_{s \alpha}(P,T)

differential adiabatic coefficient of

LaTeX Math Inline
body\alpha
-phase fluid



LaTeX Math Inline
bodyf(l)c_{pr}(P,T)

specific isobaric heat capacity of the rock matrix

Darci flow friction coefficient



LaTeX Math Inline
body

c_{p\alpha

}(P,T)

specific isobaric heat capacity

of

LaTeX Math Inline
body\alpha
-phase fluid



LaTeX Math Inline
body

\epsilon_\alpha (

P, T)

differential Joule–Thomson coefficient of

LaTeX Math Inline
body\alpha
-phase fluid
































Expand
titleIllustration

Fig. 1. Wellbore Flow Model geometry

...