Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.



Expand
titleContent


Column
width60%


Panel
bgColorAzure

Table of Contents
indent10 px
stylecircle



Column
width40%





Motivation



Assume the well is producing 

LaTeX Math Inline
bodyq_w
 of water, 
LaTeX Math Inline
bodyq_o
 of oil and 
LaTeX Math Inline
bodyq_g
 of gas as measured daily at separator with pressure 
LaTeX Math Inline
bodyp_s
 and temperature 
LaTeX Math Inline
bodyT_s

While going down to depth 

LaTeX Math Inline
bodyl
 along the hole the wellbore pressure 
LaTeX Math Inline
bodyP_{wf}(l)
 will be growing due to gravity of fluid column and friction losses emerging from fluid contact with inner pipe walls . 

Wellbore temperature 

LaTeX Math Inline
bodyT(l)
 will be also varying due to heat exchange with surrounding rocks.

The volume shares 

LaTeX Math Inline
body\{ s_w(l), \, s_o(l), \, s_g(l) \}
, occupied by different phases will be varying along hole due to along-hole pressure-temperature variation, phase segregation and phase slippage.

It is now possible to simulate the stationary multiphase wellbore flow and link the surface flow conditions (pressure, temperature and rates) to downhole flow conditions at any depth.


Expand
titleIllustration


Fig. 1. Wellbore Flow Model geometry



The most adequate and practical model can be built for a stationary fluid flow at hydrodynamic and thermodynamic equilibrium.

If flow is changing slowly over time the same solutions can be used with inputs as time functions which is called quasi-stationary flow conditions.

This model finds important applications in industry. 

If well production has been changed abruptly (for example opening or closing the flow) there will be a transition period towards the new quasi-stationary flow conditions (usually minutes or few hours).

The transition period for pressure and temperature is different and wellbore temperature takes much longer time to stabilize than pressure. 

Unlike single-phase flow (Wellbore Water Flow and Wellbore Gas Flow) the complexity of the multiphase flow during transition is so high and unstable that building a simple mathematical model does not make a practical sense.



Definition



Mathematical model of Multiphase Wellbore Flow predicts the temperature, pressure and flow speed distribution along the wellbore trajectory with account for:

  • tubing head pressure which is controled by gathering system or injection pump

  • wellbore design (pipe diameters, pipe materials and inter-pipe annular fillings)

  • fluid friction with tubing /casing walls

  • interfacial phase slippage

  • heat exchange between wellbore fluid and surrounding rocks via complex well design


Consider a 3-phase water-oil-gas flow: 

LaTeX Math Inline
body\alpha = \{ w, \, o, \, g \}
.


The 

LaTeX Math Inline
body\alpha
-phase volumetric flow fraction ( also called phase cut or  input hold-up or no-slip hold-up ) is defined as:

LaTeX Math Block
anchor1
alignmentleft
\gamma_\alpha = \frac{q_\alpha}{q_t}

where 

LaTeX Math Inline
bodyq_\alpha
 – volumetric flow rate of 
LaTeX Math Inline
body\alpha
-phase and 
LaTeX Math Inline
bodyq_t
 is the total volumetric fluid production rate:

LaTeX Math Block
anchorA4NC8
alignmentleft
q_t = \sum_\alpha q_\alpha = q_w + q_o + g_g



In multiphase wellbore flow each phase occupies its own area 

LaTeX Math Inline
bodyA_\alpha
 of the total cross-sectional area 
LaTeX Math Inline
bodyA
 of the lifting pipe. 

This area can be connected into a single piece of cross-sectional area (like in case of slug or annular flow) or dispersed into a number of connected spots (like in case of bubbly flow).

A share of total pipe cross-section area occupied by moving 

LaTeX Math Inline
body\alpha
-phase is called an 
LaTeX Math Inline
body\alpha
-phase in-situ hold-up and defined as: 

LaTeX Math Block
anchorXXJOP
alignmentleft
s_\alpha = \frac{A_\alpha}{A}

so that a sum of all in-situ hold-ups is subject to natural constraint:

LaTeX Math Block
anchors_norm
alignmentleft
\sum_\alpha s_\alpha = s_w + s_o + s_g = 1


When word hold-up is used alone it usually means in-situ hold-up and should not be confused with input hold-up or no-slip hold-up  which should be better called volumetric flow fraction.


The actual average cross-sectional velocity of moving 

LaTeX Math Inline
body\alpha
-phase is called in-situ velocity and defined as:

LaTeX Math Block
anchorZCZQ5
alignmentleft
u_\alpha = \frac{q_\alpha}{A_\alpha}

where 

LaTeX Math Inline
bodyq_\alpha
 is the volumetric 
LaTeX Math Inline
body\alpha
-phase flowrate through cross-sectional area 
LaTeX Math Inline
bodyA_\alpha
.


The superficial velocity of 

LaTeX Math Inline
body\alpha
-phase is defined as the 

LaTeX Math Block
anchor63AGJ
alignmentleft
u_{s \alpha} = \frac{q_\alpha}{A}= s_\alpha \cdot u_\alpha


The multiphase mixture velocity  is defined as total flow volume normalized by the total cross-sectional area:

LaTeX Math Block
anchor8P190
alignmentleft
u_m = \frac{1}{A} \sum_\alpha q_\alpha = \sum_\alpha u_{s \alpha} = \sum_\alpha s_\alpha \cdot u_\alpha


The difference between velocities of 

LaTeX Math Inline
body\alpha_1
-phase and 
LaTeX Math Inline
body\alpha_2
-phase is called interfacial phase phase slippage:

LaTeX Math Block
anchor1
alignmentleft
u_{\alpha_1 \alpha_2} = u_{\alpha_1} - u_{\alpha_2}


The multiphase fluid density 

LaTeX Math Inline
body\rho_m
 is defined by exact formula:

LaTeX Math Block
anchorGM2OV
alignmentleft
\rho_m =  \sum_\alpha  s_\alpha \rho_\alpha

where 

LaTeX Math Inline
body\rho_\alpha
 – density of 
LaTeX Math Inline
body\alpha
-phase.


The two-phase gas-liquid model is defined in the following terms:

LaTeX Math Block
anchor1
alignmentleft
u_m = u_{s g} + u_{s l} = s_g u_g + (1-s_g) u_l


The two-phase oil-water model is defined in the following terms:

LaTeX Math Block
anchorV4XC6
alignmentleft
u_m = u_{s o} + u_{s w} = s_o u_o + (1-s_o-s_g) u_w


The 3-phase water-oil-gas model is usually built as a superposition of gas-liquid model and then oil-water model:





Input & Output



InputOutput

LaTeX Math Inline
bodyp_s, \, T_s, \ \{ q_w, q_o, \, q_g \}
as values at separator

LaTeX Math Inline
bodyp(l), \, T(l), \, \{ s_w(l), \, s_o(l), \, s_g(l) \}, \, \{ q_w(l), \, q_o(l), \, q_g(l) \}
as logs along hole






Anchor
Application
Application

Application




Activity
InputOutput
1WPA – Well Performance AnalysisOptimizing the lift performance based on the IPR vs VLP models

LaTeX Math Inline
bodyp_s, \, T_s, \ \{ q_w, q_o, \, q_g \}
as values at separator

LaTeX Math Inline
bodyp_{wf}(l = l_{datum})
as value at formation datum

2DM – Dynamic ModellingRelating production rates at separator to bottom-hole pressure with VLP

LaTeX Math Inline
bodyp_s, \, T_s, \ \{ q_w, q_o, \, q_g \}
as values at separator

LaTeX Math Inline
bodyp_{wf}(l = l_{datum})
as value at formation datum

3PRT – Pressure TestingAdjust gauge pressure to formation datum

LaTeX Math Inline
bodyp_{wf}(l = l_{gauge})
as value at downhole gauge

LaTeX Math Inline
bodyp_{wf}(l = l_{datum})
as value at formation datum

4PLT – Production LoggingInterpretation of production logs

LaTeX Math Inline
body\{ p(l), \, T(l), \, u_m(l), \, s_w(l), \, s_o(l), \, s_g(l) \}
as logs along hole

LaTeX Math Inline
body\{ q_w(l), \, q_o(l), \, q_g(l) \}
as logs along hole

5RFP – Reservoir Flow ProfilingInterpretation of reservoir flow logs

LaTeX Math Inline
body\{ p(l), \, T(l), \, u_m(l), \, s_w(l), \, s_o(l), \, s_g(l) \}
as logs along hole

LaTeX Math Inline
body\{ q_w(l), \, q_o(l), \, q_g(l) \}
as logs along hole



Mathematical Model



Homogeneous Model


The multiphase homogeneous wellbore flow model assumes that fluid is at stationary hydrodynamic and thermodynamic equilibrium and there is no slip between phases.


This means that all have the same temperature:

LaTeX Math Block
anchor1
alignmentleft
T_w = T_o = T_g = T

same pressure:

LaTeX Math Block
anchor1
alignmentleft
P_w = P_o = P_g = T

same velocity:

LaTeX Math Block
anchor1
alignmentleft
u_w = u_o = u_g = u_m

and all dynamic fluid parameters are constant in time:

LaTeX Math Block
anchor1
alignmentleft
\frac{\partial T}{\partial t} = 0, \quad \frac{\partial P}{\partial t} = 0, \quad \frac{\partial u_m}{\partial t} = 0



The model is defined by the following set of 1D equations: 

LaTeX Math Block
anchor1
alignmentleft
A(l) \rho_m u_m = \rho_{sm} q_{s} = \rm const


LaTeX Math Block
anchor NS
alignmentleft
\frac{dp}{dl} = - \rho_m  u_m \frac{\partial u_m}{\partial l}    + \rho_m \, g \, \cos \theta + \frac{ f_m \, \rho_m \, u_m^2 \, }{2 d}


LaTeX Math Block
anchorTst
alignmentleft
\sum_\alpha \big( \rho_\alpha \, c_{p \, \alpha}  \big) \ q_m \  \frac{\partial T}{\partial l}
 \  =   \    \sum_\alpha \rho_\alpha \ c_{p \alpha} T_\alpha \frac{\partial  q_\alpha}{\partial l}  


The right side of equation 

LaTeX Math Block Reference
anchorTst
 represents the heat inflow resulting from the fluid flow from reservoir into a wellbore which carries the original reservoir temperature 
LaTeX Math Inline
bodyT_r
with heating/cooling effect from reservoir-flow throttling and well-reservoir contact throttling:

LaTeX Math Block
anchorTa
alignmentleft
T_\alpha = T_r + \epsilon_\alpha \, \delta p = T_r + \epsilon_\alpha \, (p_e - p)




The discrete computational scheme for 

LaTeX Math Block Reference
anchorTst
 will be:

LaTeX Math Block
anchorENA46
alignmentleft
\bigg( \sum_\alpha \rho_\alpha^{k-1} \ c_{p \alpha}^{k-1} \ q_\alpha^{k-1} \bigg) T^{k-1} - \bigg( \sum_\alpha \rho_\alpha^k \ c_{p \alpha}^k \ q_\alpha^k \bigg) T^k
 =   \sum_\alpha \rho_\alpha^k \ c_{p \alpha}^k \ (q_\alpha^{k-1} - q_\alpha^k) \, (T_r^k + \epsilon_\alpha^k \delta p^k )

where 

LaTeX Math Inline
body\delta p^k = p_e^k - p_{wf}^k
 is drawdown, 
LaTeX Math Inline
bodyp_e^k
 – formation pressure in 
LaTeX Math Inline
bodyk
-th grid layer, 
LaTeX Math Inline
bodyp_{wf}^k
 – bottom-hole pressure across 
LaTeX Math Inline
bodyk
-th grid layer, 
LaTeX Math Inline
bodyT_r^k
 – remote reservoir temperature of  
LaTeX Math Inline
bodyk
-th grid layer.

The 

LaTeX Math Inline
bodyl
-axis is pointing downward along hole with 
LaTeX Math Inline
body(k-1)
-th grid layer sitting above the 
LaTeX Math Inline
bodyk
-th grid layer.

If the flowrate is not vanishing during the stationary lift (

LaTeX Math Inline
body\sum_{a = \{w,o,g \}} |q_\alpha^{k-1}| > 0
) then  
LaTeX Math Inline
bodyT^{k-1}
 can be calculated iteratively from previous values of the wellbore temperature 
LaTeX Math Inline
bodyT^k
 as:


LaTeX Math Block
anchorNFGO1
alignmentleft
T^{k-1} = \frac{\bigg( \sum_\alpha \rho_\alpha^k \ c_{p \alpha}^k \ q_\alpha^k \bigg)  T^k +   \sum_\alpha \rho_\alpha^k \ c_{p \alpha}^k \ (q_\alpha^{k-1} - q_\alpha^k) \, (T_r^k + \epsilon_\alpha^k \delta p^k )}{\bigg( \sum_\alpha \rho_\alpha^{k-1} \ c_{p \alpha}^{k-1} \ q_\alpha^{k-1} \bigg) } 






Slippage Model



The multiphase slippage wellbore flow model assumes that fluid is at hydrodynamic and thermodynamic equilibrium and there is a slip between phases so that phases may be moving with different flow speeds 

LaTeX Math Inline
bodyu_w \neq u_o \neq u_g
.

The model is defined by the following set of 1D equations: 


LaTeX Math Block
anchor1
alignmentleft
A(l) \sum_\alpha \rho_\alpha u_\alpha = \sum_\alpha \rho_{s\alpha} q_{s\alpha} = \rm const


LaTeX Math Block
anchor NS
alignmentleft
\sum_\alpha \rho_\alpha  u_\alpha \frac{\partial u_\alpha}{\partial l}   =  - \frac{dp}{dl} + \rho_m \, g \, \cos \theta + \frac{ f_m \, \rho_m \, u_m^2 \, }{2 d}


LaTeX Math Block
anchorTst
alignmentleft
\sum_\alpha \rho_\alpha \ c_{p \alpha} \ u_\alpha \frac{\partial T}{\partial l}
 \  =   \   \frac{1}{A}  \ \sum_\alpha \rho_\alpha \ c_{p \alpha} T_\alpha \frac{\partial  q_\alpha}{\partial l} 


It carries the original reservoir temperature with heating/cooling effect from reservoir-flow throttling and well-reservoir contact throttling:

LaTeX Math Block
anchorTa
alignmentleft
T_\alpha = T_r + \epsilon_\alpha \, \delta P = T_r + \epsilon_\alpha \, (P_e - P_{wf})

see Nomenclature below.





References



Anchor
Nomenclature
Nomenclature

Nomenclature



LaTeX Math Inline
body\mathbf{r} = (x, \ y, \ z)

position vector at which the flow equations are set

LaTeX Math Inline
body(t,x,y,z)

time and space corrdinates ,

LaTeX Math Inline
body z
-axis is orientated towards the Earth centre,
LaTeX Math Inline
body(x,y)
define transversal plane to the
LaTeX Math Inline
body z
-axis

LaTeX Math Inline
bodyl (x, \ y, \ z)

measured depth along wellbore trajectory

LaTeX Math Inline
bodydl^2 = dx^2 + dy^2 + dz^2
starting from tubing head
LaTeX Math Inline
bodyl (x = x_0, \ y=y_0, \ z = z_{THP}) = 0

LaTeX Math Inline
bodym

indicates a mixture of fluid phases

LaTeX Math Inline
body\alpha = \{w,o,g \}

water, oil, gas phase indicator

LaTeX Math Inline
body \epsilon_\alpha (p, T)

differential Joule–Thomson coefficient of

LaTeX Math Inline
body\alpha
-phase fluid

LaTeX Math Inline
bodyp_s

pressure at separator

LaTeX Math Inline
body\eta_{s \alpha}(p,T)

differential adiabatic coefficient of

LaTeX Math Inline
body\alpha
-phase fluid

LaTeX Math Inline
bodyT_s

temperature at separator

LaTeX Math Inline
bodyf_m(u_m)

Darcy friction factor at fluid velocity

LaTeX Math Inline
bodyu_m

LaTeX Math Inline
bodyp(t, l)

wellbore fluid pressure

LaTeX Math Inline
bodyd(l)

cross-sectional average pipe flow diameter

LaTeX Math Inline
bodyT(t, l)

wellbore fluid temperature

LaTeX Math Inline
bodyA(l)

cross-sectional area

LaTeX Math Inline
bodyA(l) = 0.25 \, \pi \, d^2(l)

LaTeX Math Inline
bodyq_\alpha(t, l) = \frac{d V_\alpha}{dt}

volumetric flow rate

LaTeX Math Inline
body\alpha
-phase fluid at wellbore depth
LaTeX Math Inline
bodyl

LaTeX Math Inline
body \theta(l)

wellbore trajectory inclination to horizon

LaTeX Math Inline
bodyu_\alpha(l)

in-situ velocity of

LaTeX Math Inline
body\alpha
-phase fluid flow

LaTeX Math Inline
bodyg = 9.81 \ \rm m/s^2

gravitational acceleration constant

LaTeX Math Inline
body\rho_\alpha(p, T)

LaTeX Math Inline
body\alpha
-phase fluid density at pressure
LaTeX Math Inline
bodyp
and temperature
LaTeX Math Inline
bodyT

LaTeX Math Inline
body\lambda_t(p,T,s_w, s_o, s_g)

effective thermal conductivity of the rocks with account for multiphase fluid saturation

LaTeX Math Inline
body\rho_m(l)
 

cross-sectional average fluid density

LaTeX Math Inline
body\lambda_r(p,T)

rock matrix thermal conductivity


LaTeX Math Inline
body\nu_\alpha(p,T)

kinematic viscosity of

LaTeX Math Inline
body\alpha
-phase

LaTeX Math Inline
body\lambda_\alpha(p,T)

thermal conductivity of

LaTeX Math Inline
body\alpha
-phase fluid


LaTeX Math Inline
body\mu_\alpha(p,T)

dynamic viscosity of

LaTeX Math Inline
body\alpha
-phase fluid

LaTeX Math Inline
body\rho_r(p,T)

rock matrix mass density


LaTeX Math Inline
bodyc_{p\alpha}(p,T)

specific isobaric heat capacity of

LaTeX Math Inline
body\alpha
-phase fluid

LaTeX Math Inline
bodyc_{pr}(p,T)

specific isobaric heat capacity of the rock matrix