Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

SynonymGeothermal Temperature Profile @model = Constant Areal Geothermal Temperature Profile @model 

Motivation


In many subsurface applications which require the knowledge of subsurface temperature distributions the land area of the study is small enough to consider the subsurface 
heat flux  

LaTeX Math Inline
body--uriencoded--%7B \bf j%7D(x,y,z) = \%7B j_x, \, j_y, \, j_z \%7D
 to be independent on areal location:   and Thermal Conductivity 
LaTeX Math Inline
body--uriencoded--
%7B
\
bf j%7D(x,y,z) =
lambda_e(%7B\bf
j%7D(z
r%7D)
. Further admitting that lateral inhomogeneity with the study area is not high the Thermal Conductivity is going to be a function of true vertical depth only 
LaTeX Math Inline
body\lambda_r(x,y,z) = \lambda_r(z)
 which leads to vanishing lateral components of the heat flux LaTeX Math Inlinebody--uriencoded--%7B \bf j%7Dto be homogeneous across location area: 

LaTeX Math Block
anchor1
alignmentleft
{\bf j}({\bf r}) ={\bf j}(x,y,z)={ \bf j}(z)
LaTeX Math Block
anchor1
alignmentleft
\lambda_e({\bf r}) =\lambda_e(z)

where 

LaTeX Math Inline
bodyz
 is true vertical depth.

Since the  heat flux is conservative (see

LaTeX Math Block Reference
anchorrot_j
pageGeothermal Temperature Field @model
) then it immediately implies that:

LaTeX Math Block
anchor1
alignmentleft
{\bf j}=\{ j_x = {\rm const}, \, j_y = {\rm const} , \, j_z(z) \}

Further admitting that a surface temperature over the study area is constant: 

LaTeX Math Inline
bodyT_s(x,y) = \rm const
 one can see that lateral components of the heat flux are vanishing: 

LaTeX Math Block
anchorWS78A
alignmentleft
{ \bf j}(x,y,z) = \

...

{ j_x = 0, \, j_y = 0 , \, j_z(z) \

...

}


.Normally there are no heat sources within a subsurface volume under study other than upward Earth's Heat Flux which means that true vertical component 

LaTeX Math Inline
bodyj_z(z) = j_z = \rm const
 is constant along true vertical direction. It varies across the Earth but local value is usually well known.

This simplifies the procedure of modelling the Geothermal Temperature Field 

LaTeX Math Inline
body--uriencoded--%7B \bf j%7D(x,y,z) = \%7B 0, \, 0 , \, j_z \%7D
 along  to modelling of a Constant Areal Geothermal Temperature Profile along a given wellbore trajectory.

...

LaTeX Math Inline
bodyT_G(t, l)

LaTeX Math Inline
bodyG_T(z)

Geothermal Temperature Gradient

LaTeX Math Inline
bodyH_n

Neutral Temperature Layer (NTL)

...

LaTeX Math Inline
body--uriencoded--%7B \bf j%7D(x,y,z) = \%7B 0, \, 0 , \, j_z = %7B\rm const%7D \%7D

LaTeX Math Inline
body\lambda_re(x,y,z) = \lambda_re(z)


Equations

LaTeX Math Block
anchorT_z
alignmentleft
T_G(t, z) = T_s + \int_{z_s}^z G_T(z) dz + T_Y(t, z) + T_D(t, z)



LaTeX Math Block
anchorG_T
alignmentleft
G_T(z) = \frac{j_z}{\lambda_re(z)}
LaTeX Math Block
anchorT_z
alignmentleft
T_Y(t,z) = \delta T_A \, \exp \left[ \, {(z_s-z}) \sqrt{\frac{\pi}{a_{en} \, A_T}} \, \right] \, \cos \left[  \, 2 \pi \frac{t - \delta t_A}{A_T} + (z_s -z) \sqrt {\frac{\pi}{a_{en} \, A_T}} \, \right]
LaTeX Math Block
anchorT_z
alignmentleft
T_D(t,z) = \delta T_D \, \exp \left[ \, {(z_s-z}) \sqrt{\frac{\pi}{a_{en} \, D_T}} \, \right] \, \cos \left[  \, 2 \pi \frac{t - \delta t_D}{D_T} + (z_s -z) \sqrt {\frac{\pi}{a_{en} \, D_T}} \, \right]
Neutral Layer
LaTeX Math Block
anchorz_N
alignmentleft
z_n = z_s + H_n
LaTeX Math Block
anchorH_N
alignmentleft
H_n = \sqrt{\frac{a_{en} \, A_T }{\pi}} \, \ln \frac{\delta T_A }{\delta T_{\rm cut} }

...

Geology / Geothermal Temperature Field / Geothermal Temperature Profile

Geothermal Temperature Field @model ] [ Geothermal Temperature Gradient ]

Neutral Temperature Layer @model ]

References

...

Kasuda, T., and Archenbach, P.R. "Earth Temperature and Thermal Diffusivity at Selected Stations in the United States", ASHRAE Transactions, Vol. 71, Part 1, 1965.

...