Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Pressure profile along the pipe
LaTeX Math Block
anchorPressureProfile
alignmentleft
L = \frac{1}{2 \, G \, c^*  \rho^*}  \cdot \ln \frac{G \, \rho^2-F}{G \, \rho_0^2-F}
-\frac{d}{f} \cdot \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}
LaTeX Math Block
anchor1
alignmentleft
 \cos \theta \neq 0
LaTeX Math Block
anchorG0
alignmentleft
L = \frac{1}{2F\, c^* \rho^*} \cdot (\rho_0^2 - \rho^2)
 -+ \frac{2d}{f} \cdot \ln \frac{\rho_0}{\rho}
LaTeX Math Block
anchor1
alignmentleft
 \cos \theta = 0

...

LaTeX Math Inline
body--uriencoded--\displaystyle j_m = \frac%7B \dot m %7D%7B A%7D

mass flux

LaTeX Math Inline
body--uriencoded--\displaystyle \dot m = \frac%7Bdm %7D%7B dt%7D

mass flowrate

LaTeX Math Inline
body--uriencoded--\displaystyle q_0 = \frac%7BdV_0%7D%7Bdt%7D = \frac%7B \dot m %7D%7B \rho_0%7D

Intake volumetric flowrate

LaTeX Math Inline
body\rho_0 = \rho(T_0, p_0)

Intake fluid density 

LaTeX Math Inline
body\Delta z(l) = z(l)-z(0)

elevation drop along pipe trajectory

LaTeX Math Inline
body--uriencoded--f = f(%7B\rm Re%7D(T,\rho), \, \epsilon) = \rm const

Darcy friction factor 

LaTeX Math Inline
body--uriencoded--\displaystyle %7B\rm Re%7D(T,\rho) =\frac%7Bj_m \cdot d%7D%7B\mu(T,\rho)%7D

Reynolds number in Pipe Flow

LaTeX Math Inline
body\mu(T,\rho)

dynamic viscosity as function of fluid temperature 

LaTeX Math Inline
bodyT
 and density 
LaTeX Math Inline
body\rho

LaTeX Math Inline
body--uriencoded--\displaystyle d = \sqrt%7B \frac%7B4 A%7D%7B\pi%7D%7D = \rm const

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

LaTeX Math Inline
bodyG = g \, \cos \theta = \Delta Z/L = \rm const

gravity acceleration along pipe 

LaTeX Math Inline
body--uriencoded--\Delta Z = Z_%7Bout%7D - Z_%7Bin%7D

altitude drop in downwards direction (positive if descending)

LaTeX Math Inline
body--uriencoded--F = j_m%5e2 \cdot f/(2d) = F(l) = \rm const


...

LaTeX Math Block
anchorn
alignmentleft
n = \frac{f \, L^*}{d}
LaTeX Math Block
anchorL*
alignmentleft
L^* = \frac{1}{2 \, G \, c^* \, \rho^*} = \frac{1}{2 \, G \, c_0 \, \rho_0}
LaTeX Math Block
anchorrho_rho0
alignmentleft
\rho_0/\rho = \frac{1+c^* p_0}{1+c^* p}

...

LaTeX Math Inline
bodyn \geq 1
 which is equivalent to
LaTeX Math Inline
body--uriencoded--L%5e* \geq 1d
 and holds true for the most of practical tube diameters (< 1 m ), as the lowest practical values of 
LaTeX Math Inline
body--uriencoded--L%5e* \geq d
are 
LaTeX Math Inline
body--uriencoded--L%5e* \geq 7,000 \, %7B\rm m%7D
 

LaTeX Math Block
anchorq0_G
alignmentleft
q_0^2 = 
\frac{2 \, d \, A^2 \, G}{c^* \rho^*f} \cdot \frac{left [
1 -+ \frac{(\rho/\rho_0)^2-1}{1- \cdotexp (2 \exp, c_0 \left(  -L/ L^* \right)}{2 \ln (\rho_0/\rho) + fL/d \cdot (1- \exp \left(  - L/ L^* \right))/(L/L^*)}, \rho_0 \, G \, L)}
 \right]
=
\frac{2 \, d \, A^2  \, g}{f \, L} \cdot \left [ 
\Delta Z + ((\rho/\rho_0)^2 -1) \cdot  \frac{ \Delta Z}{1 - \exp(2 \, c_0 \, \rho_0 \, g \,  \Delta Z)}
\right]
LaTeX Math Block
anchorq0_G
alignmentleft
\dot m = \rho_0 \, q_0
LaTeX Math Block
anchorq0_G
alignmentleft
\dot m^2 = \frac{A^2}{c^* \rho^*} \cdot \frac{\rho_0^2 - \rho^2 \cdot \exp \left(  -L/ L^* \right)}{2 \ln (\rho_0/\rho) + fL/d \cdot (1- \exp \left(  - L/ L^* \right))/(L/L^*)}
LaTeX Math Block
anchorstatic
alignmentleft
\rho = 
\rho_0 \, \exp (2(c_0 \, \rho_0 \, G \, L/L^*) \cdot, \sqrt{ 1 - \frac{f}{2d \, q_0^2}{2 \, d \, A^2} \cdot \frac{j_m^2}{G1- \exp(-2 \, c _0 \, \rho_0^2}0 \cdot, ( 1 - \exp(-L/L^*)}
LaTeX Math Block
anchor1
alignmentleft
p(L) = \frac{1}{c^*} \cdot \left[ 
-1 + (1+c^* p_0) \cdot \exp (2 \, L/L^*G \, L)}{G}} 
=\rho_0 \, \exp (с_0 \, \rho_0 \, g \, \Delta Z) \cdot \sqrt{  1 - \frac{f8}{2d\pi^2}  \cdot   \frac{j_m^2f \, L}{Gd^5} \rhocdot q_0^2} \cdot \left(frac{1 - \exp(- 2 \, c_0 \, \rho_0 \, g \, \Delta (-L/L^*) \right) }
\right]Z) } { g \, \Delta Z}}
LaTeX Math Block
anchor1
alignmentleft
p(L) = p_0 + \frac{\rho/\rho_0 -1}{c_0} 
Pressure Profile in GC-proxy static fluid column @model
LaTeX Math Block
anchorstatic
alignmentleft
\rho = \rho_0 \, \exp (L/L^*c_0 \, \rho_0 \, g \, \Delta Z)
LaTeX Math Block
anchorstatic
alignmentleft
p(L) =  p_0 + \frac{-1 +\exp (1+c^*c_0 \, p\rho_0) \, g \cdot, \exp(L/L^*)}{c^*}  Delta Z) -1}{c_0} 


See also

...