Motivation


Proxy model of Pressure Profile in Homogeneous Steady-State Pipe Flow @model in the form of algebraic equation for the fast computation.


Outputs


Pressure distribution along the pipe

Flowrate distribution along the pipe

Flow velocity distribution along the pipe

Inputs


Intake temperature 

Along-pipe temperature profile 

Intake pressure 

Intake flowrate 

Pipeline trajectory TVDss

Pipe cross-section area  

Inner pipe wall roughness

Assumptions


Steady-State flowQuasi-isothermal flow

Homogenous flow

Constant cross-section pipe area along hole

Constant inclinationConstant friction along hole

Linear density

  which leads to    and  


Equations


Pressure profile along the pipe
L = \frac{1}{2 \, G \, c^*  \rho^*}  \cdot \ln \frac{G \, \rho^2-F}{G \, \rho_0^2-F}
-\frac{d}{f} \cdot \ln \frac{F/\rho^2 - G}{ F/\rho_0^2-G}
 \cos \theta \neq 0
L = \frac{1}{2F\, c^* \rho^*} \cdot (\rho_0^2 - \rho^2)
 + \frac{2d}{f} \cdot \ln \frac{\rho_0}{\rho}
 \cos \theta = 0

where

mass flux

mass flowrate

Intake volumetric flowrate

Intake fluid density 

elevation drop along pipe trajectory

Darcy friction factor 

Reynolds number in Pipe Flow

dynamic viscosity as function of fluid temperature  and density 

characteristic linear dimension of the pipe

(or exactly a pipe diameter in case of a circular pipe)

gravity acceleration along pipe 

altitude drop in downwards direction (positive if descending)


See Derivation of Pressure Profile in GF-Proxy Pipe Flow @model


Alternative forms


 Volumetric Flowrate in inclined pipe

q_0^2 = \frac{2 d A^2 G}{f} \cdot \left[ 

1 + \frac{ (\rho/\rho_0)^2 -1}{1- (\rho_0/\rho)^{\frac{2}{n-1}} \cdot 
\exp \left( \frac{fL/d}{ n-1}  \right)}
\right]

Volumetric Flowrate in horizontal pipe

q_0^2 = \frac{A^2}{c^* \rho^*} \cdot \frac{1 - (\rho/\rho_0)^2}{2 \ln (\rho_0/\rho) + fL/d}

where

n = \frac{f \, L^*}{d}
L^* = \frac{1}{2 \, G \, c^* \, \rho^*} = \frac{1}{2 \, G \, c_0 \, \rho_0}
\rho_0/\rho = \frac{1+c^* p_0}{1+c^* p}

with the following asymptotes:

Low compressible fluids:

High compressible fluids:

 


Approximations



 which is equivalent to  and holds true for the most of practical tube diameters, as the lowest practical values of  are  

q_0^2 = 
\frac{2 \, d \, A^2 \, G}{f} \cdot \left [
1 + \frac{(\rho/\rho_0)^2-1}{1- \exp (2 \, c_0 \, \rho_0 \, G \, L)}
 \right]
=
\frac{2 \, d \, A^2  \, g}{f \, L} \cdot \left [ 
\Delta Z + ((\rho/\rho_0)^2 -1) \cdot  \frac{ \Delta Z}{1 - \exp(2 \, c_0 \, \rho_0 \, g \,  \Delta Z)}
\right]
\dot m = \rho_0 \, q_0
\rho =
\rho_0 \, \exp(c_0 \, \rho_0 \, G \, L) \, \sqrt{1 - \frac{f \, q_0^2}{2 \, d \, A^2} \cdot \frac{1- \exp(-2 \, c _0 \, \rho_0 \, G \, L)}{G}} 
=\rho_0 \, \exp (с_0 \, \rho_0 \, g \, \Delta Z) \cdot \sqrt{ 1 - \frac{8}{\pi^2} \cdot   \frac{f \, L}{d^5} \cdot q_0^2 \cdot \frac{1 - \exp(- 2 \, c_0 \, \rho_0 \, g \, \Delta Z) } { g \, \Delta Z}}
p(L) = p_0 + \frac{\rho/\rho_0 -1}{c_0} 
Pressure Profile in GC-proxy static fluid column @model
\rho = \rho_0 \, \exp (c_0 \, \rho_0 \, g \, \Delta Z)
p(L) =  p_0 + \frac{\exp (c_0 \, \rho_0 \, g \, \Delta Z) -1}{c_0} 


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation / Pressure Profile in Homogeneous Quasi-Isothermal Steady-State Pipe Flow @model

Pressure Profile in G-Proxy Pipe Flow @modelPressure Profile in GF-Proxy Pipe Flow @model


References


PipeFlowSimulator.xls