Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Excerpt Include
Aquifer Drive
Aquifer Drive
nopaneltrue

Inputs & Outputs

...


InputsOutputs

LaTeX Math Inline
bodyp(t)

field-average formation pressure at time moment

LaTeX Math Inline
bodyt

LaTeX Math Inline
bodyQ^{\downarrow}_{AQ}(t)

Cumulative subsurface water influx from aquifer

LaTeX Math Inline
bodyp_i

initial formation pressure

LaTeX Math Inline
bodyq^{\downarrow}_{AQ}(t) = \frac{dQ^{\downarrow}_{AQ}}{dt}

Subsurface water flowrate from aquifer

LaTeX Math Inline
bodyB

water influx constant

LaTeX Math Inline
body\chi

aquifer diffusivity

LaTeX Math Inline
bodyA_e

net pay area
Expand
titleDetailing
Detailing Inputs

LaTeX Math Inline
bodyB = \frac{\theta}{2\pi} \cdot A_e \cdot h \cdot \phi \cdot c_t

water influx constant

LaTeX Math Inline
body\theta

central angle of net pay area ↔ aquifer contact

LaTeX Math Inline
bodyh

aquifer effective thickness

LaTeX Math Inline
body\phi

aquifer porosity

LaTeX Math Inline
bodyc_t=c_r +c_w

aquifer total compressibility

LaTeX Math Inline
bodyc_r

aquifer pore compressibility 

LaTeX Math Inline
bodyc_w

aquifer water compressibility

Physical Model

...



Mathematical Model

...

...

Linear drive
LaTeX Math Block
anchorVEH
alignmentleft
Q^{\downarrow}_{AQ}= B \cdot \int_0^t W_{eD} \left( \frac{(t-\tau)\chi}{r_e^2}
,
\
frac{r_a}{r_e} \
right) \dot p(\tau) d\tau
LaTeX Math Block
anchorWeD
alignmentleft
W_{eD}(t
,
) 
r)
= \int_0^{t} \frac{\partial p_1}{\partial r_D} \bigg|_{r
_D = 1} dt_D
LaTeX Math Block
anchorVEHL
alignmentleft
Q^{\downarrow}_{AQ}= B \cdot \int_0^t W_{eD} \left( \frac{(t-\tau)\chi}{r_e^2}, \frac{r_a}{x_e}  \right) \dot p(\tau) d\tau
LaTeX Math Block
anchorWeDL
alignmentleft
W_{eD}(t, r)= \int_0^{t} \frac{\partial p_1}{\partial x_D} \bigg|
_
{x_anchor
D = 1} dt_D 
LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \frac{dQ^{\downarrow}_{AQ}}{dt}
LaTeX Math Block
anchor1
alignmentleft
p_1 = p_1(t_D, r_D)
LaTeX Math Block
anchor
1alignmentleft
q^{\downarrow}_{AQ}(t)= \frac{dQ^{\downarrow}_{AQ}}{dt}
LaTeX Math Block
anchor1
alignmentleft
p_1 = p_1(t_D, x_D)
LaTeX Math Block
RC1
alignmentleft
\frac{\partial p_1}{\partial t_D} =  \frac{\partial^2 p_1}{\partial r_D^2} + \frac{1}{r_D}\cdot \frac{\partial p_1}{\partial r_D}
LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D = 0, r
_D)= 0
LaTeX Math Block
anchorRC1
alignmentleft
\frac{\partial p_1}{\partial t_D} =  \frac{\partial^2 p_1}{\partial x_D^2}
LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D = 0, x
_D)= 0



LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D, r_D=1) = 1
LaTeX Math Block
anchorgradp
alignmentleft
\frac{\partial p_1(t_D, r_D)}{\partial r_D} 
\Bigg|_{r_D=r_{aD}} = 0

or

LaTeX Math Block
anchorgradp
alignmentleft
 p_1(t_D, r_D = \infty) = 0
LaTeX Math BlockanchorCTalignmentleft
p_1(t_D, x_D=1) = 1
LaTeX Math Block
anchorgradp
alignmentleft
\frac{\partial p_1(t_D, x_D)}{\partial r_D} 
\Bigg|_{x_D=x_{aD}} = 0

or

LaTeX Math Block
anchorgradp
alignmentleft
 p_1(t_D, x_D = \infty) = 0



Transient flow in Radial Composite Reservoir:

Expand
titleDerivation
Panel
borderColorwheat
borderWidth10
LaTeX Math Block
anchorRC
alignmentleft
\frac{\partial p_a}{\partial t} = \chi \cdot \left[ \frac{\partial^2 p_a}{\partial r^2} + \frac{1}{r}\cdot \frac{\partial p_a}{\partial r} \right]
LaTeX Math Block
anchor1
alignmentleft
p_a(t = 0, r)= p(0)
LaTeX Math Block
anchor1
alignmentleft
p_a(t, r=r_e) = p(t)
LaTeX Math Block
anchorp1_PSS
alignmentleft
\frac{\partial p_a}{\partial r} 
\bigg|_{(t, r=r_a)} = 0

Consider a pressure convolution:

LaTeX Math Block
anchorVEHP
alignmentleft
p_a(t, r) = p(0) + \int_0^t p_1 \left(\frac{(t-\tau) \cdot \chi}{r_e^2}, \frac{r}{r_e} \right) \dot p(\tau) d\tau
LaTeX Math Block
anchor1
alignmentleft
\dot p(\tau) = \frac{d p}{d \tau}

One can easily check that

LaTeX Math Block Reference
anchorVEHP
honors the whole set of equations
LaTeX Math Block Reference
anchorRC
LaTeX Math Block Reference
anchorp1_PSS
and as such defines a unique solution of the above problem.

Water flowrate within

LaTeX Math Inline
body\theta
sector angle at interface with oil reservoir will be:

LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h \cdot u(t,r_e)

where

LaTeX Math Inline
bodyu(t,r_e)
is flow velocity at aquifer contact boundary, which is:

LaTeX Math Block
anchor1
alignmentleft
u(t,r_e) = M \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}
 

where

LaTeX Math Inline
bodyM = \frac{k}{\mu_w}
is aquifer mobility.

Water flowrate becomes:

LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h \cdot M \cdot  \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}

Cumulative water flux:

LaTeX Math Block
anchorQaq1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \int_0^t q^{\downarrow}_{AQ}(t) dt = \theta \cdot r_e \cdot h \cdot M  \cdot \int_0^t \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e} dt

Substituting

LaTeX Math Block Reference
anchorVEHP
into
LaTeX Math Block Reference
anchorQaq1
leads to:

LaTeX Math Block
anchorQaq1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot r_e \cdot h \cdot M  \cdot \int_0^t d\xi \  \frac{\partial }{\partial r} \left[  

\int_0^\xi p_1 \left( \frac{(\xi-\tau)\chi}{r_e^2}, \frac{r}{r_e} \right) \, \dot p(\tau) d\tau

\right]_{r=r_e}  
LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h \cdot M  \cdot \int_0^t d\xi \  \frac{\partial }{\partial r_D} \left[  

\int_0^\xi p_1 \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \, \dot p(\tau) d\tau

\right]_{r_D=1}   
LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h \cdot M  \cdot \int_0^t d\xi \   

\int_0^\xi \frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1} \, \dot p(\tau) d\tau

   

The above integral represents the integration over the

LaTeX Math Inline
bodyD
area in
LaTeX Math Inline
body(\tau, \ \xi)
plane (see Fig. 1):

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h \cdot M  \cdot \iint_D d\xi \ d\tau  \, \dot p(\tau) 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 

   

Image Removed

Fig. 1. Illustration of the integration

LaTeX Math Inline
bodyD
area in
LaTeX Math Inline
body(\tau, \ \xi)
plane

Changing the integration order from

LaTeX Math Inline
body\tau \rightarrow \xi
to
LaTeX Math Inline
body\xi \rightarrow \tau
leads to:

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h \cdot M  \cdot \int_0^t d\tau \int_\tau^t d\xi  \ \dot p(\tau) 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 
= 
 \theta  \cdot h \cdot M  \cdot \int_0^t \dot p(\tau) d\tau \int_\tau^t d\xi  \ 

\frac{\partial p_1}{\partial r_D} \left( \frac{(\xi-\tau)\chi}{r_e^2}, r_D \right) \Bigg|_{r_D=1} 

Replacing the variable:

LaTeX Math Block
anchor1
alignmentleft
\xi = \tau + \frac{r_e^2}{\chi} \cdot t_D \rightarrow t_D = \frac{(\xi-\tau)\chi}{r_e^2} \rightarrow d\xi = \frac{r_e^2}{\chi} \cdot dt_D

and flux becomes:

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \theta  \cdot h \cdot M \cdot \frac{r_e^2}{\chi} \cdot \int_0^t \dot p(\tau) d\tau \int_0^{(t-\tau)\chi/r_e^2}  

\frac{\partial p_1( t_D, r_D)}{\partial r_D}  \Bigg|_{r_D=1} dt_D = B \cdot \int_0^t \dot p(\tau) d\tau \int_0^{(t-\tau)\chi/r_e^2}  

\frac{\partial p_1( t_D, r_D)}{\partial r_D}  \Bigg|_{r_D=1} dt_D
where
LaTeX Math Inline
bodyB
is water influx constant and which leads to
LaTeX Math Block Reference
anchorVEH
and
LaTeX Math Block Reference
anchorWeD
.Derivation of Radial VEH Aquifer Drive @model


Computational Model

...

LaTeX Math Block
anchorVEHD
alignmentleft
Q^{\downarrow}_{AQ}(t)= B \cdot \sum_\alpha W_{eD} 
\left( \frac{ (t-\tau_\alpha) \chi}{r_e^2}
,
 \
frac{r_a}{r_e} \
right)\Delta p_\alpha 


= B \cdot W_{eD} 
\left( \frac{ (t-\tau_1) \chi}{r_e^2
}, \frac{r_a
}
{r_e}
  \right)\Delta p_1 +
 B \cdot W_{eD} 
\left( \frac{ (t-\tau_2) \chi}{r_e^2
}, \frac{r_a}{r_e
}  \right)\Delta p_2
+ ... + B \cdot W_{eD} 
\left( \frac{ (t-\tau_N) \chi}{r_e^2}
, \frac{r_a}{r_e}
 \right)\Delta p_N



This computational model is using a discrete convolution (also called superposition in some publications) with time-grid 

LaTeX Math Inline
body\{ \tau_1, \, \tau_2, \ ... \ , \tau_N \}
.

...

Expand
titlePolynomial approximations for WeD

Polynomial approximation of 

LaTeX Math Inline
bodyW_{eD}(t_D)
  are available (http://dx.doi.org/10.2118/15433-PA).


Table 1. Polynomial approximation of 

LaTeX Math Inline
bodyW_{eD}(t_D)
 for infinite aquifer

LaTeX Math Inline
bodyt_D< 0.01

LaTeX Math Inline
bodyW_{eD}=\sqrt{\frac{t_D}{\pi}}

LaTeX Math Inline
body0.01 < t_D<200

LaTeX Math Inline
body\displaystyle W_{eD}=\frac {1.2838 \cdot t_D^{1/2} + 1.19328 \cdot t_D +0.269872 \cdot t_D^{3/2} +0.00855294 \cdot t_D^2} {1+0.616599 \cdot t_D^{1/2}+0.0413008 \cdot t_D}

LaTeX Math Inline
bodyt_D > 200

LaTeX Math Inline
body\displaystyle W_{eD}=\frac{-4.29881+2.02566 \cdot t_D}{\ln t_D}


Scope of Applicability

...


The benefit of VEH approach is that net pay formation pressure history 

LaTeX Math Inline
bodyp(t)
is usually known so that water influx calculation based on aquifer properties 
LaTeX Math Inline
body\{ B, \, r_a, \, \chi \}
 is rather straightforward.

...

In modern computers the convolution is a fast fully-automated procedure and VEH model is considered as a reference in the range of analytical aquifer models.

Although the model is derived for linear and radial flow it also shows a good match for bottom-water drive depletions.

...